Cargando…

Wireless powering of e -swimmers

Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on...

Descripción completa

Detalles Bibliográficos
Autores principales: Roche, Jérome, Carrara, Serena, Sanchez, Julien, Lannelongue, Jérémy, Loget, Gabriel, Bouffier, Laurent, Fischer, Peer, Kuhn, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204063/
https://www.ncbi.nlm.nih.gov/pubmed/25330809
http://dx.doi.org/10.1038/srep06705
Descripción
Sumario:Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).