Cargando…
A Generalizable, Tunable Microfluidic Platform for Delivering Fast Temporally Varying Chemical Signals to Probe Single-Cell Response Dynamics
[Image: see text] Understanding how biological systems transduce dynamic, soluble chemical cues into physiological processes requires robust experimental tools for generating diverse temporal chemical patterns. The advent of microfluidics has seen the development of platforms for rapid fluid exchang...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204904/ https://www.ncbi.nlm.nih.gov/pubmed/25254360 http://dx.doi.org/10.1021/ac5019843 |
_version_ | 1782340620929466368 |
---|---|
author | Chingozha, Loice Zhan, Mei Zhu, Cheng Lu, Hang |
author_facet | Chingozha, Loice Zhan, Mei Zhu, Cheng Lu, Hang |
author_sort | Chingozha, Loice |
collection | PubMed |
description | [Image: see text] Understanding how biological systems transduce dynamic, soluble chemical cues into physiological processes requires robust experimental tools for generating diverse temporal chemical patterns. The advent of microfluidics has seen the development of platforms for rapid fluid exchange allowing ease of changes in the cellular microenvironment and precise cell handling. Rapid exchange is important for exposing systems to temporally varying signals. However, direct coupling of macroscale fluid flow with microstructures is potentially problematic due to the high shear stresses that inevitably add confounding mechanical perturbation effects to the biological system of interest. Here, we have devised a method of translating fast and precise macroscale flows to microscale flows using a monolithically integrated perforated membrane. We integrated a high-density cell trap array for nonadherent cells that are challenging to handle under flow conditions with a soluble chemical signal generator module. The platform enables fast and repeatable switching of stimulus and buffer at low shear stresses for quantitative live, single-cell fluorescent studies. This modular design allows facile integration of any cell-handling chip design with any chemical delivery module. We demonstrate the utility of this device by characterizing heterogeneity of oscillatory response for cells exposed to alternating Ca(2+) waveforms at various periodicities. This platform enables the analysis of cell responses to chemical perturbations at a single-cell resolution that is necessary in understanding signal transduction pathways. |
format | Online Article Text |
id | pubmed-4204904 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American
Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-42049042015-09-25 A Generalizable, Tunable Microfluidic Platform for Delivering Fast Temporally Varying Chemical Signals to Probe Single-Cell Response Dynamics Chingozha, Loice Zhan, Mei Zhu, Cheng Lu, Hang Anal Chem [Image: see text] Understanding how biological systems transduce dynamic, soluble chemical cues into physiological processes requires robust experimental tools for generating diverse temporal chemical patterns. The advent of microfluidics has seen the development of platforms for rapid fluid exchange allowing ease of changes in the cellular microenvironment and precise cell handling. Rapid exchange is important for exposing systems to temporally varying signals. However, direct coupling of macroscale fluid flow with microstructures is potentially problematic due to the high shear stresses that inevitably add confounding mechanical perturbation effects to the biological system of interest. Here, we have devised a method of translating fast and precise macroscale flows to microscale flows using a monolithically integrated perforated membrane. We integrated a high-density cell trap array for nonadherent cells that are challenging to handle under flow conditions with a soluble chemical signal generator module. The platform enables fast and repeatable switching of stimulus and buffer at low shear stresses for quantitative live, single-cell fluorescent studies. This modular design allows facile integration of any cell-handling chip design with any chemical delivery module. We demonstrate the utility of this device by characterizing heterogeneity of oscillatory response for cells exposed to alternating Ca(2+) waveforms at various periodicities. This platform enables the analysis of cell responses to chemical perturbations at a single-cell resolution that is necessary in understanding signal transduction pathways. American Chemical Society 2014-09-25 2014-10-21 /pmc/articles/PMC4204904/ /pubmed/25254360 http://dx.doi.org/10.1021/ac5019843 Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) |
spellingShingle | Chingozha, Loice Zhan, Mei Zhu, Cheng Lu, Hang A Generalizable, Tunable Microfluidic Platform for Delivering Fast Temporally Varying Chemical Signals to Probe Single-Cell Response Dynamics |
title | A Generalizable, Tunable Microfluidic Platform for Delivering Fast Temporally
Varying Chemical Signals to Probe Single-Cell Response Dynamics |
title_full | A Generalizable, Tunable Microfluidic Platform for Delivering Fast Temporally
Varying Chemical Signals to Probe Single-Cell Response Dynamics |
title_fullStr | A Generalizable, Tunable Microfluidic Platform for Delivering Fast Temporally
Varying Chemical Signals to Probe Single-Cell Response Dynamics |
title_full_unstemmed | A Generalizable, Tunable Microfluidic Platform for Delivering Fast Temporally
Varying Chemical Signals to Probe Single-Cell Response Dynamics |
title_short | A Generalizable, Tunable Microfluidic Platform for Delivering Fast Temporally
Varying Chemical Signals to Probe Single-Cell Response Dynamics |
title_sort | generalizable, tunable microfluidic platform for delivering fast temporally
varying chemical signals to probe single-cell response dynamics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204904/ https://www.ncbi.nlm.nih.gov/pubmed/25254360 http://dx.doi.org/10.1021/ac5019843 |
work_keys_str_mv | AT chingozhaloice ageneralizabletunablemicrofluidicplatformfordeliveringfasttemporallyvaryingchemicalsignalstoprobesinglecellresponsedynamics AT zhanmei ageneralizabletunablemicrofluidicplatformfordeliveringfasttemporallyvaryingchemicalsignalstoprobesinglecellresponsedynamics AT zhucheng ageneralizabletunablemicrofluidicplatformfordeliveringfasttemporallyvaryingchemicalsignalstoprobesinglecellresponsedynamics AT luhang ageneralizabletunablemicrofluidicplatformfordeliveringfasttemporallyvaryingchemicalsignalstoprobesinglecellresponsedynamics AT chingozhaloice generalizabletunablemicrofluidicplatformfordeliveringfasttemporallyvaryingchemicalsignalstoprobesinglecellresponsedynamics AT zhanmei generalizabletunablemicrofluidicplatformfordeliveringfasttemporallyvaryingchemicalsignalstoprobesinglecellresponsedynamics AT zhucheng generalizabletunablemicrofluidicplatformfordeliveringfasttemporallyvaryingchemicalsignalstoprobesinglecellresponsedynamics AT luhang generalizabletunablemicrofluidicplatformfordeliveringfasttemporallyvaryingchemicalsignalstoprobesinglecellresponsedynamics |