Cargando…
Heterologous fermentation of a diterpene from Alternaria brassisicola
A variety of different applications render terpenes and terpenoids attractive research targets. A promising but so far insufficiently explored family of terpenoids are the fusicoccanes that comprise a characteristic 5-8-5 fused tricyclic ring system. Besides herbicidal effects, these compounds also...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205885/ https://www.ncbi.nlm.nih.gov/pubmed/25379342 http://dx.doi.org/10.1080/21501203.2014.917735 |
Sumario: | A variety of different applications render terpenes and terpenoids attractive research targets. A promising but so far insufficiently explored family of terpenoids are the fusicoccanes that comprise a characteristic 5-8-5 fused tricyclic ring system. Besides herbicidal effects, these compounds also show apoptotic and anti-tumour effects on mammalian cells. The access to fusicoccanes from natural sources is scarce. Recently, we introduced a metabolically engineered Saccharomyces cerevisiae strain to enable the heterologous fermentation of the shared fusicoccane–diterpenoid precursor, fusicocca-2,10(14)-diene. Here, we show experiments towards the identification of bottlenecks in this process. The suppression of biosynthetic by-products via medium optimisation was found to be an important aspect. In addition, the fermentation process seems to be improved under oxygen limitation conditions. Under fed-batch conditions, the fermentation yield was reproducibly increased to approximately 20 mg/L. Furthermore, the impact of the properties of the terpene synthase on the fermentation yield is discussed, and the preliminary studies on the engineering of this key enzyme are presented. |
---|