Cargando…

Heterologous fermentation of a diterpene from Alternaria brassisicola

A variety of different applications render terpenes and terpenoids attractive research targets. A promising but so far insufficiently explored family of terpenoids are the fusicoccanes that comprise a characteristic 5-8-5 fused tricyclic ring system. Besides herbicidal effects, these compounds also...

Descripción completa

Detalles Bibliográficos
Autores principales: Arens, Julia, Bergs, Dominik, Mewes, Mirja, Merz, Juliane, Schembecker, Gerhard, Schulz, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205885/
https://www.ncbi.nlm.nih.gov/pubmed/25379342
http://dx.doi.org/10.1080/21501203.2014.917735
Descripción
Sumario:A variety of different applications render terpenes and terpenoids attractive research targets. A promising but so far insufficiently explored family of terpenoids are the fusicoccanes that comprise a characteristic 5-8-5 fused tricyclic ring system. Besides herbicidal effects, these compounds also show apoptotic and anti-tumour effects on mammalian cells. The access to fusicoccanes from natural sources is scarce. Recently, we introduced a metabolically engineered Saccharomyces cerevisiae strain to enable the heterologous fermentation of the shared fusicoccane–diterpenoid precursor, fusicocca-2,10(14)-diene. Here, we show experiments towards the identification of bottlenecks in this process. The suppression of biosynthetic by-products via medium optimisation was found to be an important aspect. In addition, the fermentation process seems to be improved under oxygen limitation conditions. Under fed-batch conditions, the fermentation yield was reproducibly increased to approximately 20 mg/L. Furthermore, the impact of the properties of the terpene synthase on the fermentation yield is discussed, and the preliminary studies on the engineering of this key enzyme are presented.