Cargando…

Viability of Cabralea canjerana extracts to control the South American fruit fly, Anastrepha fraterculus

Several representatives of Meliaceae contain biologically active compounds that are toxic to insects with few negative effects on the environment and humans. Our study evaluated the activity of ethyl acetate and ethanol extracts from the fruit and seeds of Cabralea canjerana (Vellozo) Mart (Sapindal...

Descripción completa

Detalles Bibliográficos
Autores principales: Magrini, Flaviane Eva, Specht, Alexandre, Gaio, Juliano, Girelli, Cristiane Priscila, Migues, Ignacio, Heinzen, Horacio, Sartori, Valdirene Camatti, Cesio, Veronica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206233/
https://www.ncbi.nlm.nih.gov/pubmed/25373194
http://dx.doi.org/10.1093/jis/14.1.47
Descripción
Sumario:Several representatives of Meliaceae contain biologically active compounds that are toxic to insects with few negative effects on the environment and humans. Our study evaluated the activity of ethyl acetate and ethanol extracts from the fruit and seeds of Cabralea canjerana (Vellozo) Mart (Sapindales: Meliaceae) on Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae). Limonoids and triterpenes were detected in fruit and seed extracts. Each extract was added to an artificial diet at three concentrations and tested after 24, 48, and 72 hr of extract application. Ethyl acetate extracts were the most active ones and showed the effect of both dose and time elapses after application on the insects. The highest toxic effect on A. fraterculus adults was from ethyl acetate extracts from fruit, followed by extracts from seeds. These extracts showed antifeedant activities. Extract solutions sprinkled on fruits of Carica papaya (L.) (Brassicales: Caricaceae) caused oviposition repellency and negatively affected the biological development of A. fraterculus . Ethyl acetate extracts highly hampered oviposition, but seed extracts showed lesser oviposition deterrence. The fruit and seed extracts diminished pupal viability. Particularly, the ethyl acetate fruit extract caused malformed adults. The sex ratio was also affected, resulting in female predominance for the fruit extract, while the seed extract showed a dose-dependent effect. Low doses caused male abundance, but at higher concentrations the effect was reversed. These encouraging results showed that the C. canjerana extracts have great potential as new tools to be used in integrated pest management programs to protect fruits against A. fraterculus .