Cargando…

Characteristic and Functional Analysis of a Newly Established Porcine Small Intestinal Epithelial Cell Line

The mucosal surface of intestine is continuously exposed to both potential pathogens and beneficial commensal microorganisms. Recent findings suggest that intestinal epithelial cells, which once considered as a simple physical barrier, are a crucial cell lineage necessary for maintaining intestinal...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jing, Hu, Guangdong, Lin, Zhi, He, Lei, Xu, Lei, Zhang, Yanming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206455/
https://www.ncbi.nlm.nih.gov/pubmed/25337908
http://dx.doi.org/10.1371/journal.pone.0110916
Descripción
Sumario:The mucosal surface of intestine is continuously exposed to both potential pathogens and beneficial commensal microorganisms. Recent findings suggest that intestinal epithelial cells, which once considered as a simple physical barrier, are a crucial cell lineage necessary for maintaining intestinal immune homeostasis. Therefore, establishing a stable and reliable intestinal epithelial cell line for future research on the mucosal immune system is necessary. In the present study, we established a porcine intestinal epithelial cell line (ZYM-SIEC02) by introducing the human telomerase reverse transcriptase (hTERT) gene into small intestinal epithelial cells derived from a neonatal, unsuckled piglet. Morphological analysis revealed a homogeneous cobblestone-like morphology of the epithelial cell sheets. Ultrastructural indicated the presence of microvilli, tight junctions, and a glandular configuration typical of the small intestine. Furthermore, ZYM-SIEC02 cells expressed epithelial cell-specific markers including cytokeratin 18, pan-cytokeratin, sucrase-isomaltase, E-cadherin and ZO-1. Immortalized ZYM-SIEC02 cells remained diploid and were not transformed. In addition, we also examined the host cell response to Salmonella and LPS and verified the enhanced expression of mRNAs encoding IL-8 and TNF-α by infection with Salmonella enterica serovars Typhimurium (S. Typhimurium). Results showed that IL-8 protein expression were upregulated following Salmonella invasion. TLR4, TLR6 and IL-6 mRNA expression were upregulated following stimulation with LPS, ZYM-SIEC02 cells were hyporeponsive to LPS with respect to IL-8 mRNA expression and secretion. TNFα mRNA levels were significantly decreased after LPS stimulation and TNF-α secretion were not detected challenged with S. Typhimurium neither nor LPS. Taken together, these findings demonstrate that ZYM-SIEC02 cells retained the morphological and functional characteristics typical of primary swine intestinal epithelial cells and thus provide a relevant in vitro model system for future studies on porcine small intestinal pathogen-host cell interactions.