Cargando…
To develop with or without the prion protein
The deletion of the cellular form of the prion protein (PrP(C)) in mouse, goat, and cattle has no drastic phenotypic consequence. This stands in apparent contradiction with PrP(C) quasi-ubiquitous expression and conserved primary and tertiary structures in mammals, and its pivotal role in neurodegen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207017/ https://www.ncbi.nlm.nih.gov/pubmed/25364763 http://dx.doi.org/10.3389/fcell.2014.00058 |
Sumario: | The deletion of the cellular form of the prion protein (PrP(C)) in mouse, goat, and cattle has no drastic phenotypic consequence. This stands in apparent contradiction with PrP(C) quasi-ubiquitous expression and conserved primary and tertiary structures in mammals, and its pivotal role in neurodegenerative diseases such as prion and Alzheimer's diseases. In zebrafish embryos, depletion of PrP ortholog leads to a severe loss-of-function phenotype. This raises the question of a potential role of PrP(C) in the development of all vertebrates. This view is further supported by the early expression of the PrP(C) encoding gene (Prnp) in many tissues of the mouse embryo, the transient disruption of a broad number of cellular pathways in early Prnp(−/−) mouse embryos, and a growing body of evidence for PrP(C) involvement in the regulation of cell proliferation and differentiation in various types of mammalian stem cells and progenitors. Finally, several studies in both zebrafish embryos and in mammalian cells and tissues in formation support a role for PrP(C) in cell adhesion, extra-cellular matrix interactions and cytoskeleton. In this review, we summarize and compare the different models used to decipher PrP(C) functions at early developmental stages during embryo- and organo-genesis and discuss their relevance. |
---|