Cargando…

Ascorbic acid is a dose-dependent inhibitor of adipocyte differentiation, probably by reducing cAMP pool

Ascorbic acid (AA) is the active component of vitamin C and antioxidant activity was long considered to be the primary molecular mechanism underlying the physiological actions of AA. We recently demonstrated that AA is a competitive inhibitor of adenylate cyclase, acting as a global regulator of int...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahman, Fryad, Al Frouh, Fadi, Bordignon, Benoit, Fraterno, Marc, Landrier, Jean-François, Peiretti, Franck, Fontes, Michel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207035/
https://www.ncbi.nlm.nih.gov/pubmed/25364736
http://dx.doi.org/10.3389/fcell.2014.00029
Descripción
Sumario:Ascorbic acid (AA) is the active component of vitamin C and antioxidant activity was long considered to be the primary molecular mechanism underlying the physiological actions of AA. We recently demonstrated that AA is a competitive inhibitor of adenylate cyclase, acting as a global regulator of intracellular cyclic adenosine monophosphate (cAMP) levels. Our study, therefore, aimed to determine new targets of AA that would account for its potential effect on signal transduction, particularly during cell differentiation. We demonstrated that AA is an inhibitor of pre-adipocyte cell line differentiation, with a dose-dependent effect. Additionally, we describe the impact of AA on the expression of genes involved in adipogenesis and/or the adipocyte phenotype. Moreover, our data suggest that treatment with AA partially reverses lipid accumulation in mature adipocytes. These properties likely reflect the function of AA as a global regulator of the cAMP pool, since an analog of AA without any antioxidant properties elicited the same effect. Additionally, we demonstrated that AA inhibits adipogenesis in OP9 mesenchymal cell line and drives the differentiation of this line toward osteogenesis. Finally, our data suggest that the intracellular transporter SVCT2 is involved in these processes and may act as a receptor for AA.