Cargando…
Isoflurane suppresses early cortical activity
OBJECTIVE: Isoflurane and other volatile anesthetics are widely used in children to induce deep and reversible coma, but they may also exert neurotoxic actions. The effects of volatile anesthetics on the immature brain activity remain elusive, however. METHODS: The effects of isoflurane on spontaneo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207500/ https://www.ncbi.nlm.nih.gov/pubmed/25356379 http://dx.doi.org/10.1002/acn3.16 |
_version_ | 1782340976626368512 |
---|---|
author | Sitdikova, Guzel Zakharov, Andrei Janackova, Sona Gerasimova, Elena Lebedeva, Julia Inacio, Ana R Zaynutdinova, Dilyara Minlebaev, Marat Holmes, Gregory L Khazipov, Roustem |
author_facet | Sitdikova, Guzel Zakharov, Andrei Janackova, Sona Gerasimova, Elena Lebedeva, Julia Inacio, Ana R Zaynutdinova, Dilyara Minlebaev, Marat Holmes, Gregory L Khazipov, Roustem |
author_sort | Sitdikova, Guzel |
collection | PubMed |
description | OBJECTIVE: Isoflurane and other volatile anesthetics are widely used in children to induce deep and reversible coma, but they may also exert neurotoxic actions. The effects of volatile anesthetics on the immature brain activity remain elusive, however. METHODS: The effects of isoflurane on spontaneous and sensory-evoked activity were explored using intracortical extracellular field potential and multiple unit recordings in the rat barrel cortex from birth to adulthood. RESULTS: During the first postnatal week, isoflurane suppressed cortical activity in a concentration-dependent manner. At surgical anesthesia levels (1.5–2%), isoflurane completely suppressed the electroencephalogram and silenced cortical neurons. Although sensory potentials evoked by the principal whisker deflection persisted, sensory-evoked early gamma and spindle-burst oscillations were completely suppressed by isoflurane. Isoflurane-induced burst-suppression pattern emerged during the second postnatal week and matured through the first postnatal month. Bursts in adolescent and adult rats were characterized by activation of entire cortical columns with a leading firing of infragranular neurons, and were triggered by principal and adjacent whiskers stimulation, and by auditory and visual stimuli, indicating an involvement of horizontal connections in their generation and horizontal spread. INTERPRETATION: The effects of isoflurane on cortical activity shift from total suppression of activity to burst-suppression pattern at the end of the first postnatal week. Developmental emergence of bursts likely involves a development of the intracortical short-and long-range connections. We hypothesize that complete suppression of cortical activity under isoflurane anesthesia during the first postnatal week may explain neuronal apoptosis stimulated by volatile anesthetics in the neonatal rats. |
format | Online Article Text |
id | pubmed-4207500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-42075002014-10-29 Isoflurane suppresses early cortical activity Sitdikova, Guzel Zakharov, Andrei Janackova, Sona Gerasimova, Elena Lebedeva, Julia Inacio, Ana R Zaynutdinova, Dilyara Minlebaev, Marat Holmes, Gregory L Khazipov, Roustem Ann Clin Transl Neurol Research Papers OBJECTIVE: Isoflurane and other volatile anesthetics are widely used in children to induce deep and reversible coma, but they may also exert neurotoxic actions. The effects of volatile anesthetics on the immature brain activity remain elusive, however. METHODS: The effects of isoflurane on spontaneous and sensory-evoked activity were explored using intracortical extracellular field potential and multiple unit recordings in the rat barrel cortex from birth to adulthood. RESULTS: During the first postnatal week, isoflurane suppressed cortical activity in a concentration-dependent manner. At surgical anesthesia levels (1.5–2%), isoflurane completely suppressed the electroencephalogram and silenced cortical neurons. Although sensory potentials evoked by the principal whisker deflection persisted, sensory-evoked early gamma and spindle-burst oscillations were completely suppressed by isoflurane. Isoflurane-induced burst-suppression pattern emerged during the second postnatal week and matured through the first postnatal month. Bursts in adolescent and adult rats were characterized by activation of entire cortical columns with a leading firing of infragranular neurons, and were triggered by principal and adjacent whiskers stimulation, and by auditory and visual stimuli, indicating an involvement of horizontal connections in their generation and horizontal spread. INTERPRETATION: The effects of isoflurane on cortical activity shift from total suppression of activity to burst-suppression pattern at the end of the first postnatal week. Developmental emergence of bursts likely involves a development of the intracortical short-and long-range connections. We hypothesize that complete suppression of cortical activity under isoflurane anesthesia during the first postnatal week may explain neuronal apoptosis stimulated by volatile anesthetics in the neonatal rats. BlackWell Publishing Ltd 2014-01 2013-11-20 /pmc/articles/PMC4207500/ /pubmed/25356379 http://dx.doi.org/10.1002/acn3.16 Text en © 2013 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Research Papers Sitdikova, Guzel Zakharov, Andrei Janackova, Sona Gerasimova, Elena Lebedeva, Julia Inacio, Ana R Zaynutdinova, Dilyara Minlebaev, Marat Holmes, Gregory L Khazipov, Roustem Isoflurane suppresses early cortical activity |
title | Isoflurane suppresses early cortical activity |
title_full | Isoflurane suppresses early cortical activity |
title_fullStr | Isoflurane suppresses early cortical activity |
title_full_unstemmed | Isoflurane suppresses early cortical activity |
title_short | Isoflurane suppresses early cortical activity |
title_sort | isoflurane suppresses early cortical activity |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207500/ https://www.ncbi.nlm.nih.gov/pubmed/25356379 http://dx.doi.org/10.1002/acn3.16 |
work_keys_str_mv | AT sitdikovaguzel isofluranesuppressesearlycorticalactivity AT zakharovandrei isofluranesuppressesearlycorticalactivity AT janackovasona isofluranesuppressesearlycorticalactivity AT gerasimovaelena isofluranesuppressesearlycorticalactivity AT lebedevajulia isofluranesuppressesearlycorticalactivity AT inacioanar isofluranesuppressesearlycorticalactivity AT zaynutdinovadilyara isofluranesuppressesearlycorticalactivity AT minlebaevmarat isofluranesuppressesearlycorticalactivity AT holmesgregoryl isofluranesuppressesearlycorticalactivity AT khazipovroustem isofluranesuppressesearlycorticalactivity |