Cargando…
Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment
It has recently been shown that networks of spiking neurons with noise can emulate simple forms of probabilistic inference through “neural sampling”, i.e., by treating spikes as samples from a probability distribution of network states that is encoded in the network. Deficiencies of the existing mod...
Autores principales: | Legenstein, Robert, Maass, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207607/ https://www.ncbi.nlm.nih.gov/pubmed/25340749 http://dx.doi.org/10.1371/journal.pcbi.1003859 |
Ejemplares similares
-
Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons
por: Pecevski, Dejan, et al.
Publicado: (2011) -
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
por: Pecevski, Dejan, et al.
Publicado: (2016) -
Spike frequency adaptation supports network computations on temporally dispersed information
por: Salaj, Darjan, et al.
Publicado: (2021) -
A solution to the learning dilemma for recurrent networks of spiking neurons
por: Bellec, Guillaume, et al.
Publicado: (2020) -
STDP Forms Associations between Memory Traces in Networks of Spiking Neurons
por: Pokorny, Christoph, et al.
Publicado: (2020)