Cargando…

PtIr–WO(3) nanostructured alloy for electrocatalytic oxidation of ethylene glycol and ethanol

In this article, we characterized tungsten oxide-decorated carbon-supported PtIr nanoparticles and tested it for the electrooxidation reactions of ethylene glycol and ethanol. Phase and morphological evaluation of the proposed electrocatalytic materials are investigated employing various characteriz...

Descripción completa

Detalles Bibliográficos
Autores principales: Murawska, Magdalena, Cox, James A., Miecznikowski, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207626/
https://www.ncbi.nlm.nih.gov/pubmed/25360067
http://dx.doi.org/10.1007/s10008-014-2493-0
Descripción
Sumario:In this article, we characterized tungsten oxide-decorated carbon-supported PtIr nanoparticles and tested it for the electrooxidation reactions of ethylene glycol and ethanol. Phase and morphological evaluation of the proposed electrocatalytic materials are investigated employing various characterization techniques including X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical diagnostic measurements such as cyclic voltammetry, chronoamperometry, and linear sweep voltammetry revealed that the tungsten oxide-modified PtIr/Vulcan nanoparticles have higher catalytic activity for ethylene glycol and ethanol electrooxidation than that of PtIr/Vulcan. A significant enhancement for electrooxidation of CO-adsorbate monolayers occurred in the presence of a transition metal oxide relative to that of pure PtIr/Vulcan electrocatalyst. The likely reasons for this are modification on the Pt center electronic structure and/or increasing the population of reactive oxo groups at the PtIr/Vulcan electrocatalytic interface in different potential regions.