Cargando…
Cytotoxic Benzophenanthridine and Furoquinoline Alkaloids from Zanthoxylum buesgenii (Rutaceae)
BACKGROUND: Zanthoxylum buesgenii is a shrub used in Sierra Leone as remedy to cure venereal diseases, arthritis, and rheumatism whereas leaves and barks are employed to treat leprosy and to relieve pain. In South West Region of Cameroon, the plant locally called “Mbem” by Lewoh-Lebang community, is...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207896/ https://www.ncbi.nlm.nih.gov/pubmed/25349626 http://dx.doi.org/10.1186/s13065-014-0061-4 |
Sumario: | BACKGROUND: Zanthoxylum buesgenii is a shrub used in Sierra Leone as remedy to cure venereal diseases, arthritis, and rheumatism whereas leaves and barks are employed to treat leprosy and to relieve pain. In South West Region of Cameroon, the plant locally called “Mbem” by Lewoh-Lebang community, is orally given to patients as aphrodisiac decoction and to increase sperm count. Previous chemical studies on Zanthoxylum species reported the identification of lignans, coumarins, diterpenes, sesquiterpenes, steroids, alkaloids and benzopropanoids. Besides, structurally diverse compounds belonging to these classes of secondary metabolites have been reported as trypanocidal, antileishmanial, antimycobacterial and cytotoxic metabolites. RESULTS: We therefore investigated the alkaloidal constituents of Z. buesgenii. In the course of the study, two benzophenanthridines [1-methoxy-12-methyl-12,13-dihydro-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-c]phenanthridine-2,13-diol (1) and isofagaridine (2)] were identified among them one new. Alongside, three known furoquinolines [maculine (3), kokusaginine (4) and teclearverdoornine (5)] were also obtained and their structures were established on the basis of their NMR data and by comparison with those previously reported. Furthermore, the cytotoxicities of metabolites (1–4) isolated in substantial amount were evaluated against a series of multidrugs-resistant cancer cell lines. While compounds 2–4 showed selective cytotoxicities, compound 1 displayed activities against all cancer cells. CONCLUSIONS: The observed activities corroborate those previously reported on similar benzophenanthridine alkaloids indicating that compounds 1 and 2 can chemically be explored to develop other chemotherapeutic agents. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13065-014-0061-4) contains supplementary material, which is available to authorized users. |
---|