Cargando…
Benchmarks for detecting ‘breakthroughs’ in clinical trials: empirical assessment of the probability of large treatment effects using kernel density estimation
OBJECTIVE: To understand how often ‘breakthroughs,’ that is, treatments that significantly improve health outcomes, can be developed. DESIGN: We applied weighted adaptive kernel density estimation to construct the probability density function for observed treatment effects from five publicly funded...
Autores principales: | Miladinovic, Branko, Kumar, Ambuj, Mhaskar, Rahul, Djulbegovic, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208055/ https://www.ncbi.nlm.nih.gov/pubmed/25335959 http://dx.doi.org/10.1136/bmjopen-2014-005249 |
Ejemplares similares
-
Survival of patients with non-small cell lung cancer without treatment: a systematic review and meta-analysis
por: Wao, Hesborn, et al.
Publicado: (2013) -
A Flexible Alternative to the Cox Proportional Hazards Model for Assessing the Prognostic Accuracy of Hospice Patient Survival
por: Miladinovic, Branko, et al.
Publicado: (2012) -
When are clinical trials beneficial for study patients and future patients? A factorial vignette-based survey of institutional review board members
por: Mhaskar, Rahul, et al.
Publicado: (2016) -
Instrumental variable meta-analysis of individual patient data: application to adjust for treatment non-compliance
por: Miladinovic, Branko, et al.
Publicado: (2011) -
Treatment Success in Cancer: Industry Compared to Publicly Sponsored Randomized Controlled Trials
por: Djulbegovic, Benjamin, et al.
Publicado: (2013)