Cargando…
White Blood Cell Segmentation by Color-Space-Based K-Means Clustering
White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytom...
Autores principales: | Zhang, Congcong, Xiao, Xiaoyan, Li, Xiaomei, Chen, Ying-Jie, Zhen, Wu, Chang, Jun, Zheng, Chengyun, Liu, Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208166/ https://www.ncbi.nlm.nih.gov/pubmed/25256107 http://dx.doi.org/10.3390/s140916128 |
Ejemplares similares
-
Segmentation of White Blood Cells through Nucleus Mark Watershed Operations and Mean Shift Clustering
por: Liu, Zhi, et al.
Publicado: (2015) -
The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels
por: Wiharto, Wiharto, et al.
Publicado: (2020) -
Unsupervised color image segmentation: A case of RGB histogram based K-means clustering initialization
por: Basar, Sadia, et al.
Publicado: (2020) -
Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm
por: Ghane, Narjes, et al.
Publicado: (2017) -
Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing
por: Sarrafzadeh, Omid, et al.
Publicado: (2015)