Cargando…

A Lightweight Hierarchical Activity Recognition Framework Using Smartphone Sensors

Activity recognition for the purposes of recognizing a user's intentions using multimodal sensors is becoming a widely researched topic largely based on the prevalence of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by only using a smartphone due to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Manhyung, Bang, Jae Hun, Nugent, Chris, McClean, Sally, Lee, Sungyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208169/
https://www.ncbi.nlm.nih.gov/pubmed/25184486
http://dx.doi.org/10.3390/s140916181
Descripción
Sumario:Activity recognition for the purposes of recognizing a user's intentions using multimodal sensors is becoming a widely researched topic largely based on the prevalence of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by only using a smartphone due to the challenges with activity modeling and real-time recognition. In addition, recognizing life-logs is difficult due to the absence of an established framework which enables the use of different sources of sensor data. In this paper, we propose a smartphone-based Hierarchical Activity Recognition Framework which extends the Naïve Bayes approach for the processing of activity modeling and real-time activity recognition. The proposed algorithm demonstrates higher accuracy than the Naïve Bayes approach and also enables the recognition of a user's activities within a mobile environment. The proposed algorithm has the ability to classify fifteen activities with an average classification accuracy of 92.96%.