Cargando…
A Novel HMM Distributed Classifier for the Detection of Gait Phases by Means of a Wearable Inertial Sensor Network
In this work, we decided to apply a hierarchical weighted decision, proposed and used in other research fields, for the recognition of gait phases. The developed and validated novel distributed classifier is based on hierarchical weighted decision from outputs of scalar Hidden Markov Models (HMM) ap...
Autores principales: | Taborri, Juri, Rossi, Stefano, Palermo, Eduardo, Patanè, Fabrizio, Cappa, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208171/ https://www.ncbi.nlm.nih.gov/pubmed/25184488 http://dx.doi.org/10.3390/s140916212 |
Ejemplares similares
-
WARNING: A Wearable Inertial-Based Sensor Integrated with a Support Vector Machine Algorithm for the Identification of Faults during Race Walking
por: Taborri, Juri, et al.
Publicado: (2023) -
Gait Partitioning Methods: A Systematic Review
por: Taborri, Juri, et al.
Publicado: (2016) -
Automatic Detection of Faults in Race Walking: A Comparative Analysis of Machine-Learning Algorithms Fed with Inertial Sensor Data
por: Taborri, Juri, et al.
Publicado: (2019) -
Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy
por: Taborri, Juri, et al.
Publicado: (2015) -
Reliability of wearable sensors-based parameters for the assessment of knee stability
por: Baldazzi, Andrea, et al.
Publicado: (2022)