Cargando…
Comparison of Gunshot Entrance Morphologies Caused by .40-Caliber Smith & Wesson, .380-Caliber, and 9-mm Luger Bullets: A Finite Element Analysis Study
Firearms can cause fatal wounds, which can be identified by traces on or around the body. However, there are cases where neither the bullet nor gun is found at the crime scene. Ballistic research involving finite element models can reproduce computational biomechanical conditions, without compromisi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208880/ https://www.ncbi.nlm.nih.gov/pubmed/25343337 http://dx.doi.org/10.1371/journal.pone.0111192 |
Sumario: | Firearms can cause fatal wounds, which can be identified by traces on or around the body. However, there are cases where neither the bullet nor gun is found at the crime scene. Ballistic research involving finite element models can reproduce computational biomechanical conditions, without compromising bioethics, as they involve no direct tests on animals or humans. This study aims to compare the morphologies of gunshot entrance holes caused by.40-caliber Smith & Wesson (S&W), .380-caliber, and 9×19-mm Luger bullets. A fully metal-jacketed.40 S&W projectile, a fully metal-jacketed.380 projectile, and a fully metal-jacketed 9×19-mm Luger projectile were computationally fired at the glabellar region of the finite element model from a distance of 10 cm, at perpendicular incidence. The results show different morphologies in the entrance holes produced by the three bullets, using the same skull at the same shot distance. The results and traits of the entrance holes are discussed. Finite element models allow feasible computational ballistic research, which may be useful to forensic experts when comparing and analyzing data related to gunshot wounds in the forehead. |
---|