Cargando…
A Composite Model for Subgroup Identification and Prediction via Bicluster Analysis
BACKGROUND: A major challenges in the analysis of large and complex biomedical data is to develop an approach for 1) identifying distinct subgroups in the sampled populations, 2) characterizing their relationships among subgroups, and 3) developing a prediction model to classify subgroup memberships...
Autores principales: | Chen, Hung-Chia, Zou, Wen, Lu, Tzu-Pin, Chen, James J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210136/ https://www.ncbi.nlm.nih.gov/pubmed/25347824 http://dx.doi.org/10.1371/journal.pone.0111318 |
Ejemplares similares
-
Identification of Bicluster Regions in a Binary Matrix and Its Applications
por: Chen, Hung-Chia, et al.
Publicado: (2013) -
Identifying gene-specific subgroups: an alternative to biclustering
por: Branders, Vincent, et al.
Publicado: (2019) -
Subgroup identification for treatment selection in biomarker adaptive design
por: Lu, Tzu-Pin, et al.
Publicado: (2015) -
Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms
por: Chia, Burton Kuan Hui, et al.
Publicado: (2010) -
Biclustering reveals breast cancer tumour subgroups with common clinical features and improves prediction of disease recurrence
por: Wang, Yi Kan, et al.
Publicado: (2013)