Cargando…
HilA-like regulators in Escherichia coli pathotypes: the YgeH protein from the enteroaggregative strain 042
BACKGROUND: The HilA protein is the master regulator of the Salmonella pathogenicity island 1 (SPI1). EilA and YgeH proteins show a moderate similarity to HilA and are encoded in pathogenicity islands from several E. coli strains, both pathogenic and non-pathogenic. In the present work we characteri...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210603/ https://www.ncbi.nlm.nih.gov/pubmed/25343852 http://dx.doi.org/10.1186/s12866-014-0268-5 |
Sumario: | BACKGROUND: The HilA protein is the master regulator of the Salmonella pathogenicity island 1 (SPI1). EilA and YgeH proteins show a moderate similarity to HilA and are encoded in pathogenicity islands from several E. coli strains, both pathogenic and non-pathogenic. In the present work we characterize the YgeH protein from the enteroaggregative E. coli strain 042 (locus tag EC042_3050). RESULTS: We show that both E. coli 042 YgeH and EilA proteins are able to functionally replace HilA in Salmonella. Interestingly, this is not the rule for all YgeH proteins: the YgeH protein from the enterohaemorragic E. coli strain O157 appears to be non-functional. ygeH expression is not influenced by growth osmolarity or temperature, and moderately increases in cells entering the stationary phase. H-NS represses ygeH expression under all growth conditions tested, and binds with specificity to the ygeH promoter region. As expected, expression of ETT2 (Escherichia coli type 3 secretion system 2) genes requires YgeH: ETT2 operons are downregulated in a ygeH mutant. Accordingly, since H-NS represses ygeH expression, ETT2 expression is significantly increased in an hns mutant. CONCLUSION: E. coli 042 YgeH protein is functional and able to replace HilA in Salmonella. ETT2 gene expression requires YgeH activity which, in turn, is subjected to H-NS silencing. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12866-014-0268-5) contains supplementary material, which is available to authorized users. |
---|