Cargando…
Compressed Sensing MR Image Reconstruction Exploiting TGV and Wavelet Sparsity
Compressed sensing (CS) based methods make it possible to reconstruct magnetic resonance (MR) images from undersampled measurements, which is known as CS-MRI. The reference-driven CS-MRI reconstruction schemes can further decrease the sampling ratio by exploiting the sparsity of the difference image...
Autores principales: | Zhao, Di, Du, Huiqian, Han, Yu, Mei, Wenbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211212/ https://www.ncbi.nlm.nih.gov/pubmed/25371704 http://dx.doi.org/10.1155/2014/958671 |
Ejemplares similares
-
Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior
por: Zhao, Di, et al.
Publicado: (2021) -
Compressed sensing cardiac MRI exploiting spatio-temporal sparsity
por: Zamani, Jafar, et al.
Publicado: (2013) -
Compressed sensing based dynamic MR image reconstruction by using 3D-total generalized variation and tensor decomposition: k-t TGV-TD
por: Zhang, Jucheng, et al.
Publicado: (2022) -
Compressive SAR Imaging with Joint Sparsity and Local Similarity Exploitation
por: Shen, Fangfang, et al.
Publicado: (2015) -
Image Compressive Sensing via Hybrid Nonlocal Sparsity Regularization
por: Li, Lizhao, et al.
Publicado: (2020)