Cargando…

Interspecific Neighbor Interactions Promote the Positive Diversity-Productivity Relationship in Experimental Grassland Communities

Because the frequency of heterospecific interactions inevitably increases with species richness in a community, biodiversity effects must be expressed by such interactions. However, little is understood how heterospecific interactions affect ecosystem productivity because rarely are biodiversity eco...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuhua, Wang, Yongfan, Yu, Shixiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211843/
https://www.ncbi.nlm.nih.gov/pubmed/25350670
http://dx.doi.org/10.1371/journal.pone.0111434
Descripción
Sumario:Because the frequency of heterospecific interactions inevitably increases with species richness in a community, biodiversity effects must be expressed by such interactions. However, little is understood how heterospecific interactions affect ecosystem productivity because rarely are biodiversity ecosystem functioning experiments spatially explicitly manipulated. To test the effect of heterospecific interactions on productivity, direct evidence of heterospecific neighborhood interaction is needed. In this study we conducted experiments with a detailed spatial design to investigate whether and how heterospecific neighborhood interactions promote primary productivity in a grassland community. The results showed that increasing the heterospecific: conspecific contact ratio significantly increased productivity. We found there was a significant difference in the variation in plant height between monoculture and mixture communities, suggesting that height-asymmetric competition for light plays a central role in promoting productivity. Heterospecific interactions make tall plants grow taller and short plants become smaller in mixtures compared to monocultures, thereby increasing the efficiency of light interception and utilization. Overyielding in the mixture communities arises from the fact that the loss in the growth of short plants is compensated by the increased growth of tall plants. The positive correlation between species richness and primary production was strengthened by increasing the frequency of heterospecific interactions. We conclude that species richness significantly promotes primary ecosystem production through heterospecific neighborhood interactions.