Cargando…
Efficient Algorithms for Multivariate Linear Mixed Models in Genome-wide Association Studies
Multivariate linear mixed models (mvLMMs) are powerful tools for testing SNP associations with multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present computationally-efficient algorithms for fitting mvLMMs and computing likelihoo...
Autores principales: | Zhou, Xiang, Stephens, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211878/ https://www.ncbi.nlm.nih.gov/pubmed/24531419 http://dx.doi.org/10.1038/nmeth.2848 |
Ejemplares similares
-
Genome-wide Efficient Mixed Model Analysis for Association Studies
por: Zhou, Xiang, et al.
Publicado: (2012) -
Penalized multivariate linear mixed model for longitudinal genome-wide association studies
por: Liu, Jin, et al.
Publicado: (2014) -
MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information
por: Lee, S. H., et al.
Publicado: (2016) -
Polygenic Modeling with Bayesian Sparse Linear Mixed Models
por: Zhou, Xiang, et al.
Publicado: (2013) -
Further Improvements to Linear Mixed Models for Genome-Wide Association
Studies
por: Widmer, Christian, et al.
Publicado: (2014)