Cargando…
Gold rotor bead tracking (AuRBT) for high-speed measurements of DNA twist, torque, and extension
Simultaneous measurements of DNA twist and extension have been used to measure physical properties of the double helix and to characterize structural dynamics and mechanochemistry in nucleoprotein complexes. However, the spatiotemporal resolution of twist measurements has been limited by the use of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211898/ https://www.ncbi.nlm.nih.gov/pubmed/24562422 http://dx.doi.org/10.1038/nmeth.2854 |
Sumario: | Simultaneous measurements of DNA twist and extension have been used to measure physical properties of the double helix and to characterize structural dynamics and mechanochemistry in nucleoprotein complexes. However, the spatiotemporal resolution of twist measurements has been limited by the use of angular probes with large rotational drags, preventing the detection of short-lived intermediates or small angular steps. Here we introduce AuRBT, demonstrating a >100X improvement in time resolution over previous techniques. AuRBT employs gold nanoparticles as bright low-drag rotational and extensional probes, relying on instrumentation that combines magnetic tweezers with objective-side evanescent darkfield microscopy. In an initial application to molecular motor mechanism, we have examined the high-speed structural dynamics of DNA gyrase, revealing an unanticipated transient intermediate. AuRBT also enables direct measurements of DNA torque with >50X shorter integration times than previous techniques; here we demonstrate high-resolution torque spectroscopy by mapping the conformational landscape of a Z-forming DNA sequence. |
---|