Cargando…
Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility
The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211907/ https://www.ncbi.nlm.nih.gov/pubmed/25364244 http://dx.doi.org/10.2147/IJN.S68539 |
_version_ | 1782341636740612096 |
---|---|
author | Zaloga, Jan Janko, Christina Nowak, Johannes Matuszak, Jasmin Knaup, Sabine Eberbeck, Dietmar Tietze, Rainer Unterweger, Harald Friedrich, Ralf P Duerr, Stephan Heimke-Brinck, Ralph Baum, Eva Cicha, Iwona Dörje, Frank Odenbach, Stefan Lyer, Stefan Lee, Geoffrey Alexiou, Christoph |
author_facet | Zaloga, Jan Janko, Christina Nowak, Johannes Matuszak, Jasmin Knaup, Sabine Eberbeck, Dietmar Tietze, Rainer Unterweger, Harald Friedrich, Ralf P Duerr, Stephan Heimke-Brinck, Ralph Baum, Eva Cicha, Iwona Dörje, Frank Odenbach, Stefan Lyer, Stefan Lee, Geoffrey Alexiou, Christoph |
author_sort | Zaloga, Jan |
collection | PubMed |
description | The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical application. The synthesis is straightforward and reproducible and thus easily translatable into a good manufacturing practice environment. |
format | Online Article Text |
id | pubmed-4211907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-42119072014-10-31 Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility Zaloga, Jan Janko, Christina Nowak, Johannes Matuszak, Jasmin Knaup, Sabine Eberbeck, Dietmar Tietze, Rainer Unterweger, Harald Friedrich, Ralf P Duerr, Stephan Heimke-Brinck, Ralph Baum, Eva Cicha, Iwona Dörje, Frank Odenbach, Stefan Lyer, Stefan Lee, Geoffrey Alexiou, Christoph Int J Nanomedicine Original Research The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical application. The synthesis is straightforward and reproducible and thus easily translatable into a good manufacturing practice environment. Dove Medical Press 2014-10-20 /pmc/articles/PMC4211907/ /pubmed/25364244 http://dx.doi.org/10.2147/IJN.S68539 Text en © 2014 Zaloga et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Zaloga, Jan Janko, Christina Nowak, Johannes Matuszak, Jasmin Knaup, Sabine Eberbeck, Dietmar Tietze, Rainer Unterweger, Harald Friedrich, Ralf P Duerr, Stephan Heimke-Brinck, Ralph Baum, Eva Cicha, Iwona Dörje, Frank Odenbach, Stefan Lyer, Stefan Lee, Geoffrey Alexiou, Christoph Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility |
title | Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility |
title_full | Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility |
title_fullStr | Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility |
title_full_unstemmed | Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility |
title_short | Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility |
title_sort | development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211907/ https://www.ncbi.nlm.nih.gov/pubmed/25364244 http://dx.doi.org/10.2147/IJN.S68539 |
work_keys_str_mv | AT zalogajan developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT jankochristina developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT nowakjohannes developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT matuszakjasmin developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT knaupsabine developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT eberbeckdietmar developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT tietzerainer developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT unterwegerharald developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT friedrichralfp developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT duerrstephan developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT heimkebrinckralph developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT baumeva developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT cichaiwona developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT dorjefrank developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT odenbachstefan developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT lyerstefan developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT leegeoffrey developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility AT alexiouchristoph developmentofalauricacidalbuminhybridironoxidenanoparticlesystemwithimprovedbiocompatibility |