Cargando…

Universal Nonadiabatic Geometric Gates in Two-Qubit Decoherence-Free Subspaces

Geometric quantum computation in decoherence-free subspaces is of great practical importance because it can protect quantum information from both control errors and collective dephasing. However, previous proposed schemes have either states leakage or four-body interactions problems. Here, we propos...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Guofu, Long, Guilu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212229/
https://www.ncbi.nlm.nih.gov/pubmed/25351574
http://dx.doi.org/10.1038/srep06814
Descripción
Sumario:Geometric quantum computation in decoherence-free subspaces is of great practical importance because it can protect quantum information from both control errors and collective dephasing. However, previous proposed schemes have either states leakage or four-body interactions problems. Here, we propose a feasible scheme without these two problems. Our scheme is realized in two-qubit decoherence-free subspaces. Since the Hamiltonian we use is generic, our scheme looks promising to be demonstrated experimentally in different systems, including superconducting charge qubits.