Cargando…
OxMaR: Open Source Free Software for Online Minimization and Randomization for Clinical Trials
Minimization is a valuable method for allocating participants between the control and experimental arms of clinical studies. The use of minimization reduces differences that might arise by chance between the study arms in the distribution of patient characteristics such as gender, ethnicity and age....
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213009/ https://www.ncbi.nlm.nih.gov/pubmed/25353169 http://dx.doi.org/10.1371/journal.pone.0110761 |
Sumario: | Minimization is a valuable method for allocating participants between the control and experimental arms of clinical studies. The use of minimization reduces differences that might arise by chance between the study arms in the distribution of patient characteristics such as gender, ethnicity and age. However, unlike randomization, minimization requires real time assessment of each new participant with respect to the preceding distribution of relevant participant characteristics within the different arms of the study. For multi-site studies, this necessitates centralized computational analysis that is shared between all study locations. Unfortunately, there is no suitable freely available open source or free software that can be used for this purpose. OxMaR was developed to enable researchers in any location to use minimization for patient allocation and to access the minimization algorithm using any device that can connect to the internet such as a desktop computer, tablet or mobile phone. The software is complete in itself and requires no special packages or libraries to be installed. It is simple to set up and run over the internet using online facilities which are very low cost or even free to the user. Importantly, it provides real time information on allocation to the study lead or administrator and generates real time distributed backups with each allocation. OxMaR can readily be modified and customised and can also be used for standard randomization. It has been extensively tested and has been used successfully in a low budget multi-centre study. Hitherto, the logistical difficulties involved in minimization have precluded its use in many small studies and this software should allow more widespread use of minimization which should lead to studies with better matched control and experimental arms. OxMaR should be particularly valuable in low resource settings. |
---|