Cargando…
Neural correlates of water reward in thirsty Drosophila
Drinking water is innately rewarding to thirsty animals. In addition, the consumed value can be assigned to behavioral actions and predictive sensory cues by associative learning. Here we show that thirst converts water avoidance into water-seeking in naïve Drosophila. Thirst also permits flies to l...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213141/ https://www.ncbi.nlm.nih.gov/pubmed/25262493 http://dx.doi.org/10.1038/nn.3827 |
Sumario: | Drinking water is innately rewarding to thirsty animals. In addition, the consumed value can be assigned to behavioral actions and predictive sensory cues by associative learning. Here we show that thirst converts water avoidance into water-seeking in naïve Drosophila. Thirst also permits flies to learn olfactory cues paired with water reward. Water learning requires water taste and <40 water-responsive dopaminergic neurons that innervate a restricted zone of the mushroom body γ lobe. These water learning neurons are different from those that are critical to convey the reinforcing effects of sugar. Naïve water-seeking behavior in thirsty flies does not require water taste but relies on another subset of water-responsive dopaminergic neurons that target the mushroom body β′ lobe. Furthermore, these naïve water-approach neurons are not required for learned water-seeking. Our results therefore demonstrate that naïve and learned water-seeking, and water learning, utilize separable neural circuitry in the brain of thirsty flies. |
---|