Cargando…
Classification of Images Acquired with Colposcopy Using Artificial Neural Networks
OBJECTIVE: To explore the advantages of using artificial neural networks (ANNs) to recognize patterns in colposcopy to classify images in colposcopy. PURPOSE: Transversal, descriptive, and analytical study of a quantitative approach with an emphasis on diagnosis. The training test e validation set w...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213185/ https://www.ncbi.nlm.nih.gov/pubmed/25374454 http://dx.doi.org/10.4137/CIN.S17948 |
Sumario: | OBJECTIVE: To explore the advantages of using artificial neural networks (ANNs) to recognize patterns in colposcopy to classify images in colposcopy. PURPOSE: Transversal, descriptive, and analytical study of a quantitative approach with an emphasis on diagnosis. The training test e validation set was composed of images collected from patients who underwent colposcopy. These images were provided by a gynecology clinic located in the city of Criciúma (Brazil). The image database (n = 170) was divided; 48 images were used for the training process, 58 images were used for the tests, and 64 images were used for the validation. A hybrid neural network based on Kohonen self-organizing maps and multilayer perceptron (MLP) networks was used. RESULTS: After 126 cycles, the validation was performed. The best results reached an accuracy of 72.15%, a sensibility of 69.78%, and a specificity of 68%. CONCLUSION: Although the preliminary results still exhibit an average efficiency, the present approach is an innovative and promising technique that should be deeply explored in the context of the present study. |
---|