Cargando…
Influenza Vaccines: A Moving Interdisciplinary Field
Vaccination is by far the most effective way of preventing morbidity and mortality due to infection of the upper respiratory tract by influenza virus. Current vaccines require yearly vaccine updates as the influenza virus can escape vaccine-induced humoral immunity due to the antigenic variability o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213563/ https://www.ncbi.nlm.nih.gov/pubmed/25302957 http://dx.doi.org/10.3390/v6103809 |
_version_ | 1782341842064375808 |
---|---|
author | Schotsaert, Michael García-Sastre, Adolfo |
author_facet | Schotsaert, Michael García-Sastre, Adolfo |
author_sort | Schotsaert, Michael |
collection | PubMed |
description | Vaccination is by far the most effective way of preventing morbidity and mortality due to infection of the upper respiratory tract by influenza virus. Current vaccines require yearly vaccine updates as the influenza virus can escape vaccine-induced humoral immunity due to the antigenic variability of its surface antigens. In case of a pandemic, new vaccines become available too late with current vaccine practices. New technologies that allow faster production of vaccine seed strains in combination with alternative production platforms and vaccine formulations may shorten the time gap between emergence of a new influenza virus and a vaccine becoming available. Adjuvants may allow antigen-sparing, allowing more people to be vaccinated with current vaccine production capacity. Adjuvants and universal vaccines can target immune responses to more conserved influenza epitopes, which eventually will result in broader protection for a longer time. In addition, further immunological studies are needed to gain insights in the immune features that contribute to protection from influenza-related disease and mortality, allowing redefinition of correlates of protection beyond virus neutralization in vitro. |
format | Online Article Text |
id | pubmed-4213563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-42135632014-10-31 Influenza Vaccines: A Moving Interdisciplinary Field Schotsaert, Michael García-Sastre, Adolfo Viruses Review Vaccination is by far the most effective way of preventing morbidity and mortality due to infection of the upper respiratory tract by influenza virus. Current vaccines require yearly vaccine updates as the influenza virus can escape vaccine-induced humoral immunity due to the antigenic variability of its surface antigens. In case of a pandemic, new vaccines become available too late with current vaccine practices. New technologies that allow faster production of vaccine seed strains in combination with alternative production platforms and vaccine formulations may shorten the time gap between emergence of a new influenza virus and a vaccine becoming available. Adjuvants may allow antigen-sparing, allowing more people to be vaccinated with current vaccine production capacity. Adjuvants and universal vaccines can target immune responses to more conserved influenza epitopes, which eventually will result in broader protection for a longer time. In addition, further immunological studies are needed to gain insights in the immune features that contribute to protection from influenza-related disease and mortality, allowing redefinition of correlates of protection beyond virus neutralization in vitro. MDPI 2014-10-09 /pmc/articles/PMC4213563/ /pubmed/25302957 http://dx.doi.org/10.3390/v6103809 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Schotsaert, Michael García-Sastre, Adolfo Influenza Vaccines: A Moving Interdisciplinary Field |
title | Influenza Vaccines: A Moving Interdisciplinary Field |
title_full | Influenza Vaccines: A Moving Interdisciplinary Field |
title_fullStr | Influenza Vaccines: A Moving Interdisciplinary Field |
title_full_unstemmed | Influenza Vaccines: A Moving Interdisciplinary Field |
title_short | Influenza Vaccines: A Moving Interdisciplinary Field |
title_sort | influenza vaccines: a moving interdisciplinary field |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213563/ https://www.ncbi.nlm.nih.gov/pubmed/25302957 http://dx.doi.org/10.3390/v6103809 |
work_keys_str_mv | AT schotsaertmichael influenzavaccinesamovinginterdisciplinaryfield AT garciasastreadolfo influenzavaccinesamovinginterdisciplinaryfield |