Cargando…
Novel Chlamydia trachomatis Strains in Heterosexual Sex Partners, Indianapolis, Indiana, USA
Chlamydia trachomatis causes a high number of sexually transmitted infections worldwide, but reproducible and precise strain typing to link partners is lacking. We evaluated multilocus sequence typing (MLST) for this purpose by detecting sequence types (STs) concordant for the ompA genotype, a singl...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214310/ https://www.ncbi.nlm.nih.gov/pubmed/25340463 http://dx.doi.org/10.3201/2011.140604 |
Sumario: | Chlamydia trachomatis causes a high number of sexually transmitted infections worldwide, but reproducible and precise strain typing to link partners is lacking. We evaluated multilocus sequence typing (MLST) for this purpose by detecting sequence types (STs) concordant for the ompA genotype, a single-locus typing standard. We tested samples collected during April 2000–October 2003 from members of established heterosexual partnerships (dyads) in the Indianapolis, Indiana, USA, area who self-reported being coital partners within the previous 30 days. C. trachomatis DNA from 28 dyads was tested by MLST; sequences were aligned and analyzed for ST and phylogenetic relationships. MLST detected 9 C. trachomatis STs, 4 unique to Indianapolis; STs were identical within each dyad. Thirteen unique strains were identified; 9 (32%) dyads harbored novel recombinant strains that phylogenetically clustered with strains comprising the recombinants. The high rate of novel C. trachomatis recombinants identified supports the use of MLST for transmission and strain diversity studies among at-risk populations. |
---|