Cargando…

Bayesian Action&Perception: Representing the World in the Brain

Theories of perception seek to explain how sensory data are processed to identify previously experienced objects, but they usually do not consider the decisions and effort that goes into acquiring the sensory data. Identification of objects according to their tactile properties requires active explo...

Descripción completa

Detalles Bibliográficos
Autores principales: Loeb, Gerald E., Fishel, Jeremy A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214374/
https://www.ncbi.nlm.nih.gov/pubmed/25400542
http://dx.doi.org/10.3389/fnins.2014.00341
Descripción
Sumario:Theories of perception seek to explain how sensory data are processed to identify previously experienced objects, but they usually do not consider the decisions and effort that goes into acquiring the sensory data. Identification of objects according to their tactile properties requires active exploratory movements. The sensory data thereby obtained depend on the details of those movements, which human subjects change rapidly and seemingly capriciously. Bayesian Exploration is an algorithm that uses prior experience to decide which next exploratory movement should provide the most useful data to disambiguate the most likely possibilities. In previous studies, a simple robot equipped with a biomimetic tactile sensor and operated according to Bayesian Exploration performed in a manner similar to and actually better than humans on a texture identification task. Expanding on this, “Bayesian Action&Perception” refers to the construction and querying of an associative memory of previously experienced entities containing both sensory data and the motor programs that elicited them. We hypothesize that this memory can be queried (i) to identify useful next exploratory movements during identification of an unknown entity (“action for perception”) or (ii) to characterize whether an unknown entity is fit for purpose (“perception for action”) or (iii) to recall what actions might be feasible for a known entity (Gibsonian affordance). The biomimetic design of this mechatronic system may provide insights into the neuronal basis of biological action and perception.