Cargando…

Suppressing qubit dephasing using real-time Hamiltonian estimation

Unwanted interaction between a quantum system and its fluctuating environment leads to decoherence and is the primary obstacle to establishing a scalable quantum information processing architecture. Strategies such as environmental and materials engineering, quantum error correction and dynamical de...

Descripción completa

Detalles Bibliográficos
Autores principales: Shulman, M. D., Harvey, S. P., Nichol, J. M., Bartlett, S. D., Doherty, A. C., Umansky, V., Yacoby, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214408/
https://www.ncbi.nlm.nih.gov/pubmed/25295674
http://dx.doi.org/10.1038/ncomms6156
_version_ 1782341952588480512
author Shulman, M. D.
Harvey, S. P.
Nichol, J. M.
Bartlett, S. D.
Doherty, A. C.
Umansky, V.
Yacoby, A.
author_facet Shulman, M. D.
Harvey, S. P.
Nichol, J. M.
Bartlett, S. D.
Doherty, A. C.
Umansky, V.
Yacoby, A.
author_sort Shulman, M. D.
collection PubMed
description Unwanted interaction between a quantum system and its fluctuating environment leads to decoherence and is the primary obstacle to establishing a scalable quantum information processing architecture. Strategies such as environmental and materials engineering, quantum error correction and dynamical decoupling can mitigate decoherence, but generally increase experimental complexity. Here we improve coherence in a qubit using real-time Hamiltonian parameter estimation. Using a rapidly converging Bayesian approach, we precisely measure the splitting in a singlet-triplet spin qubit faster than the surrounding nuclear bath fluctuates. We continuously adjust qubit control parameters based on this information, thereby improving the inhomogenously broadened coherence time [Image: see text] from tens of nanoseconds to >2 μs. Because the technique demonstrated here is compatible with arbitrary qubit operations, it is a natural complement to quantum error correction and can be used to improve the performance of a wide variety of qubits in both meteorological and quantum information processing applications.
format Online
Article
Text
id pubmed-4214408
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-42144082014-11-13 Suppressing qubit dephasing using real-time Hamiltonian estimation Shulman, M. D. Harvey, S. P. Nichol, J. M. Bartlett, S. D. Doherty, A. C. Umansky, V. Yacoby, A. Nat Commun Article Unwanted interaction between a quantum system and its fluctuating environment leads to decoherence and is the primary obstacle to establishing a scalable quantum information processing architecture. Strategies such as environmental and materials engineering, quantum error correction and dynamical decoupling can mitigate decoherence, but generally increase experimental complexity. Here we improve coherence in a qubit using real-time Hamiltonian parameter estimation. Using a rapidly converging Bayesian approach, we precisely measure the splitting in a singlet-triplet spin qubit faster than the surrounding nuclear bath fluctuates. We continuously adjust qubit control parameters based on this information, thereby improving the inhomogenously broadened coherence time [Image: see text] from tens of nanoseconds to >2 μs. Because the technique demonstrated here is compatible with arbitrary qubit operations, it is a natural complement to quantum error correction and can be used to improve the performance of a wide variety of qubits in both meteorological and quantum information processing applications. Nature Pub. Group 2014-10-08 /pmc/articles/PMC4214408/ /pubmed/25295674 http://dx.doi.org/10.1038/ncomms6156 Text en Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Shulman, M. D.
Harvey, S. P.
Nichol, J. M.
Bartlett, S. D.
Doherty, A. C.
Umansky, V.
Yacoby, A.
Suppressing qubit dephasing using real-time Hamiltonian estimation
title Suppressing qubit dephasing using real-time Hamiltonian estimation
title_full Suppressing qubit dephasing using real-time Hamiltonian estimation
title_fullStr Suppressing qubit dephasing using real-time Hamiltonian estimation
title_full_unstemmed Suppressing qubit dephasing using real-time Hamiltonian estimation
title_short Suppressing qubit dephasing using real-time Hamiltonian estimation
title_sort suppressing qubit dephasing using real-time hamiltonian estimation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214408/
https://www.ncbi.nlm.nih.gov/pubmed/25295674
http://dx.doi.org/10.1038/ncomms6156
work_keys_str_mv AT shulmanmd suppressingqubitdephasingusingrealtimehamiltonianestimation
AT harveysp suppressingqubitdephasingusingrealtimehamiltonianestimation
AT nicholjm suppressingqubitdephasingusingrealtimehamiltonianestimation
AT bartlettsd suppressingqubitdephasingusingrealtimehamiltonianestimation
AT dohertyac suppressingqubitdephasingusingrealtimehamiltonianestimation
AT umanskyv suppressingqubitdephasingusingrealtimehamiltonianestimation
AT yacobya suppressingqubitdephasingusingrealtimehamiltonianestimation