Cargando…
A Network-Based Classification Model for Deriving Novel Drug-Disease Associations and Assessing Their Molecular Actions
The growing number and variety of genetic network datasets increases the feasibility of understanding how drugs and diseases are associated at the molecular level. Properly selected features of the network representations of existing drug-disease associations can be used to infer novel indications o...
Autores principales: | Oh, Min, Ahn, Jaegyoon, Yoon, Youngmi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214731/ https://www.ncbi.nlm.nih.gov/pubmed/25356910 http://dx.doi.org/10.1371/journal.pone.0111668 |
Ejemplares similares
-
Drug voyager: a computational platform for exploring unintended drug action
por: Oh, Min, et al.
Publicado: (2017) -
A Multi-Sample Based Method for Identifying Common CNVs in Normal Human Genomic Structure Using High-Resolution aCGH Data
por: Park, Chihyun, et al.
Publicado: (2011) -
Novel deep learning model for more accurate prediction of drug-drug interaction effects
por: Lee, Geonhee, et al.
Publicado: (2019) -
Improved method for protein complex detection using bottleneck proteins
por: Ahn, Jaegyoon, et al.
Publicado: (2013) -
RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance
por: Choi, Jonghwan, et al.
Publicado: (2020)