Cargando…
Toward personalizing treatment for depression: predicting diagnosis and severity
OBJECTIVE: Depression is a prevalent disorder difficult to diagnose and treat. In particular, depressed patients exhibit largely unpredictable responses to treatment. Toward the goal of personalizing treatment for depression, we develop and evaluate computational models that use electronic health re...
Autores principales: | Huang, Sandy H, LePendu, Paea, Iyer, Srinivasan V, Tai-Seale, Ming, Carrell, David, Shah, Nigam H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215055/ https://www.ncbi.nlm.nih.gov/pubmed/24988898 http://dx.doi.org/10.1136/amiajnl-2014-002733 |
Ejemplares similares
-
Functional evaluation of out-of-the-box text-mining tools for data-mining tasks
por: Jung, Kenneth, et al.
Publicado: (2015) -
Using Temporal Patterns in Medical Records to Discern Adverse Drug Events from Indications
por: Liu, Yi, et al.
Publicado: (2012) -
Annotation analysis for testing drug safety signals using unstructured clinical notes
por: LePendu, Paea, et al.
Publicado: (2012) -
Analyzing Patterns of Drug Use in Clinical Notes for Patient Safety
por: LePendu, Paea, et al.
Publicado: (2012) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: ( 201)