Cargando…
A role for human mitochondrial complex II in the production of reactive oxygen species in human skin
The mitochondrial respiratory chain is a major generator of cellular oxidative stress, thought to be an underlying cause of the carcinogenic and ageing process in many tissues including skin. Previous studies of the relative contributions of the respiratory chain (RC) complexes I, II and III towards...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215388/ https://www.ncbi.nlm.nih.gov/pubmed/25460738 http://dx.doi.org/10.1016/j.redox.2014.08.005 |
_version_ | 1782342084325277696 |
---|---|
author | Anderson, Alasdair Bowman, Amy Boulton, Sarah Jayne Manning, Philip Birch-Machin, Mark A. |
author_facet | Anderson, Alasdair Bowman, Amy Boulton, Sarah Jayne Manning, Philip Birch-Machin, Mark A. |
author_sort | Anderson, Alasdair |
collection | PubMed |
description | The mitochondrial respiratory chain is a major generator of cellular oxidative stress, thought to be an underlying cause of the carcinogenic and ageing process in many tissues including skin. Previous studies of the relative contributions of the respiratory chain (RC) complexes I, II and III towards production of reactive oxygen species (ROS) have focussed on rat tissues and certainly not on human skin which is surprising as this tissue is regularly exposed to UVA in sunlight, a potent generator of cellular oxidative stress. In a novel approach we have used an array of established specific metabolic inhibitors and DHR123 fluorescence to study the relative roles of the mitochondrial RC complexes in cellular ROS production in 2 types of human skin cells. These include additional enhancement of ROS production by exposure to physiological levels of UVA. The effects within epidermal and dermal derived skin cells are compared to other tissue cell types as well as those harbouring a compromised mitochondrial status (Rho-zero A549). The results show that the complex II inhibitor, TTFA, was the only RC inhibitor to significantly increase UVA-induced ROS production in both skin cell types (P<0.05) suggesting that the role of human skin complex II in terms of influencing ROS production is more important than previously thought particularly in comparison to liver cells. Interestingly, two-fold greater maximal activity of complex II enzyme was observed in both skin cell types compared to liver (P<0.001). The activities of RC enzymes appear to decrease with increasing age and telomere length is correlated with ageing. Our study showed that the level of maximal complex II activity was higher in the MRC5/hTERT (human lung fibroblasts transfected with telomerase) cells than the corresponding wild type cells (P=0.0012) which can be considered (in terms of telomerase activity) as models of younger and older cells respectively. |
format | Online Article Text |
id | pubmed-4215388 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-42153882014-11-06 A role for human mitochondrial complex II in the production of reactive oxygen species in human skin Anderson, Alasdair Bowman, Amy Boulton, Sarah Jayne Manning, Philip Birch-Machin, Mark A. Redox Biol Research Paper The mitochondrial respiratory chain is a major generator of cellular oxidative stress, thought to be an underlying cause of the carcinogenic and ageing process in many tissues including skin. Previous studies of the relative contributions of the respiratory chain (RC) complexes I, II and III towards production of reactive oxygen species (ROS) have focussed on rat tissues and certainly not on human skin which is surprising as this tissue is regularly exposed to UVA in sunlight, a potent generator of cellular oxidative stress. In a novel approach we have used an array of established specific metabolic inhibitors and DHR123 fluorescence to study the relative roles of the mitochondrial RC complexes in cellular ROS production in 2 types of human skin cells. These include additional enhancement of ROS production by exposure to physiological levels of UVA. The effects within epidermal and dermal derived skin cells are compared to other tissue cell types as well as those harbouring a compromised mitochondrial status (Rho-zero A549). The results show that the complex II inhibitor, TTFA, was the only RC inhibitor to significantly increase UVA-induced ROS production in both skin cell types (P<0.05) suggesting that the role of human skin complex II in terms of influencing ROS production is more important than previously thought particularly in comparison to liver cells. Interestingly, two-fold greater maximal activity of complex II enzyme was observed in both skin cell types compared to liver (P<0.001). The activities of RC enzymes appear to decrease with increasing age and telomere length is correlated with ageing. Our study showed that the level of maximal complex II activity was higher in the MRC5/hTERT (human lung fibroblasts transfected with telomerase) cells than the corresponding wild type cells (P=0.0012) which can be considered (in terms of telomerase activity) as models of younger and older cells respectively. Elsevier 2014-08-28 /pmc/articles/PMC4215388/ /pubmed/25460738 http://dx.doi.org/10.1016/j.redox.2014.08.005 Text en © 2014 The Authors http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
spellingShingle | Research Paper Anderson, Alasdair Bowman, Amy Boulton, Sarah Jayne Manning, Philip Birch-Machin, Mark A. A role for human mitochondrial complex II in the production of reactive oxygen species in human skin |
title | A role for human mitochondrial complex II in the production of reactive oxygen species in human skin |
title_full | A role for human mitochondrial complex II in the production of reactive oxygen species in human skin |
title_fullStr | A role for human mitochondrial complex II in the production of reactive oxygen species in human skin |
title_full_unstemmed | A role for human mitochondrial complex II in the production of reactive oxygen species in human skin |
title_short | A role for human mitochondrial complex II in the production of reactive oxygen species in human skin |
title_sort | role for human mitochondrial complex ii in the production of reactive oxygen species in human skin |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215388/ https://www.ncbi.nlm.nih.gov/pubmed/25460738 http://dx.doi.org/10.1016/j.redox.2014.08.005 |
work_keys_str_mv | AT andersonalasdair aroleforhumanmitochondrialcomplexiiintheproductionofreactiveoxygenspeciesinhumanskin AT bowmanamy aroleforhumanmitochondrialcomplexiiintheproductionofreactiveoxygenspeciesinhumanskin AT boultonsarahjayne aroleforhumanmitochondrialcomplexiiintheproductionofreactiveoxygenspeciesinhumanskin AT manningphilip aroleforhumanmitochondrialcomplexiiintheproductionofreactiveoxygenspeciesinhumanskin AT birchmachinmarka aroleforhumanmitochondrialcomplexiiintheproductionofreactiveoxygenspeciesinhumanskin AT andersonalasdair roleforhumanmitochondrialcomplexiiintheproductionofreactiveoxygenspeciesinhumanskin AT bowmanamy roleforhumanmitochondrialcomplexiiintheproductionofreactiveoxygenspeciesinhumanskin AT boultonsarahjayne roleforhumanmitochondrialcomplexiiintheproductionofreactiveoxygenspeciesinhumanskin AT manningphilip roleforhumanmitochondrialcomplexiiintheproductionofreactiveoxygenspeciesinhumanskin AT birchmachinmarka roleforhumanmitochondrialcomplexiiintheproductionofreactiveoxygenspeciesinhumanskin |