Cargando…
Statistical normalization techniques for magnetic resonance imaging()()
While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intens...
Autores principales: | Shinohara, Russell T., Sweeney, Elizabeth M., Goldsmith, Jeff, Shiee, Navid, Mateen, Farrah J., Calabresi, Peter A., Jarso, Samson, Pham, Dzung L., Reich, Daniel S., Crainiceanu, Ciprian M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215426/ https://www.ncbi.nlm.nih.gov/pubmed/25379412 http://dx.doi.org/10.1016/j.nicl.2014.08.008 |
Ejemplares similares
-
Corrigendum to “Statistical normalization techniques for magnetic resonance imaging” [NeuroImage: Clinical 6 (2014) 9–19]
por: Shinohara, Russell T., et al.
Publicado: (2015) -
OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI()
por: Sweeney, Elizabeth M., et al.
Publicado: (2013) -
A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI
por: Sweeney, Elizabeth M., et al.
Publicado: (2014) -
Health Effects of Lesion Localization in Multiple Sclerosis: Spatial Registration and Confounding Adjustment
por: Eloyan, Ani, et al.
Publicado: (2014) -
Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions
por: Sweeney, Elizabeth M., et al.
Publicado: (2015)