Cargando…

Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig

Animal models of tinnitus allow us to study the relationship between changes in neural activity and the tinnitus percept. Here, guinea pigs were subjected to unilateral noise trauma and tested behaviourally for tinnitus 8 weeks later. By comparing animals with tinnitus with those without, all of whi...

Descripción completa

Detalles Bibliográficos
Autores principales: Coomber, Ben, Berger, Joel I, Kowalkowski, Victoria L, Shackleton, Trevor M, Palmer, Alan R, Wallace, Mark N
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215599/
https://www.ncbi.nlm.nih.gov/pubmed/24702651
http://dx.doi.org/10.1111/ejn.12580
_version_ 1782342123713986560
author Coomber, Ben
Berger, Joel I
Kowalkowski, Victoria L
Shackleton, Trevor M
Palmer, Alan R
Wallace, Mark N
author_facet Coomber, Ben
Berger, Joel I
Kowalkowski, Victoria L
Shackleton, Trevor M
Palmer, Alan R
Wallace, Mark N
author_sort Coomber, Ben
collection PubMed
description Animal models of tinnitus allow us to study the relationship between changes in neural activity and the tinnitus percept. Here, guinea pigs were subjected to unilateral noise trauma and tested behaviourally for tinnitus 8 weeks later. By comparing animals with tinnitus with those without, all of which were noise-exposed, we were able to identify changes unique to the tinnitus group. Three physiological markers known to change following noise exposure were examined: spontaneous firing rates (SFRs) and burst firing in the inferior colliculus (IC), evoked auditory brainstem responses (ABRs), and the number of neurons in the cochlear nucleus containing nitric oxide synthase (NOS). We obtained behavioural evidence of tinnitus in 12 of 16 (75%) animals. Both SFRs and incidences of burst firing were elevated in the IC of all noise-exposed animals, but there were no differences between tinnitus and no-tinnitus animals. There were significant decreases in ipsilateral ABR latencies in tinnitus animals, contrary to what might be expected with a small hearing loss. Furthermore, there was an ipsilateral–contralateral asymmetry in NOS staining in the ventral cochlear nucleus (VCN) that was only apparent in tinnitus animals. Tinnitus animals had a significantly greater number of NOS-containing neurons on the noise-exposed side, whereas no-tinnitus animals did not. These data suggest that measuring NOS in the VCN and recording ABRs supplement behavioural methods for confirming tinnitus in animals, and that nitric oxide is involved in plastic neural changes associated with tinnitus.
format Online
Article
Text
id pubmed-4215599
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BlackWell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-42155992014-11-18 Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig Coomber, Ben Berger, Joel I Kowalkowski, Victoria L Shackleton, Trevor M Palmer, Alan R Wallace, Mark N Eur J Neurosci Disorders of the Nervous System Animal models of tinnitus allow us to study the relationship between changes in neural activity and the tinnitus percept. Here, guinea pigs were subjected to unilateral noise trauma and tested behaviourally for tinnitus 8 weeks later. By comparing animals with tinnitus with those without, all of which were noise-exposed, we were able to identify changes unique to the tinnitus group. Three physiological markers known to change following noise exposure were examined: spontaneous firing rates (SFRs) and burst firing in the inferior colliculus (IC), evoked auditory brainstem responses (ABRs), and the number of neurons in the cochlear nucleus containing nitric oxide synthase (NOS). We obtained behavioural evidence of tinnitus in 12 of 16 (75%) animals. Both SFRs and incidences of burst firing were elevated in the IC of all noise-exposed animals, but there were no differences between tinnitus and no-tinnitus animals. There were significant decreases in ipsilateral ABR latencies in tinnitus animals, contrary to what might be expected with a small hearing loss. Furthermore, there was an ipsilateral–contralateral asymmetry in NOS staining in the ventral cochlear nucleus (VCN) that was only apparent in tinnitus animals. Tinnitus animals had a significantly greater number of NOS-containing neurons on the noise-exposed side, whereas no-tinnitus animals did not. These data suggest that measuring NOS in the VCN and recording ABRs supplement behavioural methods for confirming tinnitus in animals, and that nitric oxide is involved in plastic neural changes associated with tinnitus. BlackWell Publishing Ltd 2014-07 2014-04-05 /pmc/articles/PMC4215599/ /pubmed/24702651 http://dx.doi.org/10.1111/ejn.12580 Text en © 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/3.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Disorders of the Nervous System
Coomber, Ben
Berger, Joel I
Kowalkowski, Victoria L
Shackleton, Trevor M
Palmer, Alan R
Wallace, Mark N
Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig
title Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig
title_full Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig
title_fullStr Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig
title_full_unstemmed Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig
title_short Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig
title_sort neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig
topic Disorders of the Nervous System
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215599/
https://www.ncbi.nlm.nih.gov/pubmed/24702651
http://dx.doi.org/10.1111/ejn.12580
work_keys_str_mv AT coomberben neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig
AT bergerjoeli neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig
AT kowalkowskivictorial neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig
AT shackletontrevorm neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig
AT palmeralanr neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig
AT wallacemarkn neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig