Cargando…
Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig
Animal models of tinnitus allow us to study the relationship between changes in neural activity and the tinnitus percept. Here, guinea pigs were subjected to unilateral noise trauma and tested behaviourally for tinnitus 8 weeks later. By comparing animals with tinnitus with those without, all of whi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215599/ https://www.ncbi.nlm.nih.gov/pubmed/24702651 http://dx.doi.org/10.1111/ejn.12580 |
_version_ | 1782342123713986560 |
---|---|
author | Coomber, Ben Berger, Joel I Kowalkowski, Victoria L Shackleton, Trevor M Palmer, Alan R Wallace, Mark N |
author_facet | Coomber, Ben Berger, Joel I Kowalkowski, Victoria L Shackleton, Trevor M Palmer, Alan R Wallace, Mark N |
author_sort | Coomber, Ben |
collection | PubMed |
description | Animal models of tinnitus allow us to study the relationship between changes in neural activity and the tinnitus percept. Here, guinea pigs were subjected to unilateral noise trauma and tested behaviourally for tinnitus 8 weeks later. By comparing animals with tinnitus with those without, all of which were noise-exposed, we were able to identify changes unique to the tinnitus group. Three physiological markers known to change following noise exposure were examined: spontaneous firing rates (SFRs) and burst firing in the inferior colliculus (IC), evoked auditory brainstem responses (ABRs), and the number of neurons in the cochlear nucleus containing nitric oxide synthase (NOS). We obtained behavioural evidence of tinnitus in 12 of 16 (75%) animals. Both SFRs and incidences of burst firing were elevated in the IC of all noise-exposed animals, but there were no differences between tinnitus and no-tinnitus animals. There were significant decreases in ipsilateral ABR latencies in tinnitus animals, contrary to what might be expected with a small hearing loss. Furthermore, there was an ipsilateral–contralateral asymmetry in NOS staining in the ventral cochlear nucleus (VCN) that was only apparent in tinnitus animals. Tinnitus animals had a significantly greater number of NOS-containing neurons on the noise-exposed side, whereas no-tinnitus animals did not. These data suggest that measuring NOS in the VCN and recording ABRs supplement behavioural methods for confirming tinnitus in animals, and that nitric oxide is involved in plastic neural changes associated with tinnitus. |
format | Online Article Text |
id | pubmed-4215599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-42155992014-11-18 Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig Coomber, Ben Berger, Joel I Kowalkowski, Victoria L Shackleton, Trevor M Palmer, Alan R Wallace, Mark N Eur J Neurosci Disorders of the Nervous System Animal models of tinnitus allow us to study the relationship between changes in neural activity and the tinnitus percept. Here, guinea pigs were subjected to unilateral noise trauma and tested behaviourally for tinnitus 8 weeks later. By comparing animals with tinnitus with those without, all of which were noise-exposed, we were able to identify changes unique to the tinnitus group. Three physiological markers known to change following noise exposure were examined: spontaneous firing rates (SFRs) and burst firing in the inferior colliculus (IC), evoked auditory brainstem responses (ABRs), and the number of neurons in the cochlear nucleus containing nitric oxide synthase (NOS). We obtained behavioural evidence of tinnitus in 12 of 16 (75%) animals. Both SFRs and incidences of burst firing were elevated in the IC of all noise-exposed animals, but there were no differences between tinnitus and no-tinnitus animals. There were significant decreases in ipsilateral ABR latencies in tinnitus animals, contrary to what might be expected with a small hearing loss. Furthermore, there was an ipsilateral–contralateral asymmetry in NOS staining in the ventral cochlear nucleus (VCN) that was only apparent in tinnitus animals. Tinnitus animals had a significantly greater number of NOS-containing neurons on the noise-exposed side, whereas no-tinnitus animals did not. These data suggest that measuring NOS in the VCN and recording ABRs supplement behavioural methods for confirming tinnitus in animals, and that nitric oxide is involved in plastic neural changes associated with tinnitus. BlackWell Publishing Ltd 2014-07 2014-04-05 /pmc/articles/PMC4215599/ /pubmed/24702651 http://dx.doi.org/10.1111/ejn.12580 Text en © 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/3.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Disorders of the Nervous System Coomber, Ben Berger, Joel I Kowalkowski, Victoria L Shackleton, Trevor M Palmer, Alan R Wallace, Mark N Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig |
title | Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig |
title_full | Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig |
title_fullStr | Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig |
title_full_unstemmed | Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig |
title_short | Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig |
title_sort | neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig |
topic | Disorders of the Nervous System |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215599/ https://www.ncbi.nlm.nih.gov/pubmed/24702651 http://dx.doi.org/10.1111/ejn.12580 |
work_keys_str_mv | AT coomberben neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig AT bergerjoeli neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig AT kowalkowskivictorial neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig AT shackletontrevorm neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig AT palmeralanr neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig AT wallacemarkn neuralchangesaccompanyingtinnitusfollowingunilateralacoustictraumaintheguineapig |