Cargando…

Rapid Analysis of Glycolytic and Oxidative Substrate Flux of Cancer Cells in a Microplate

Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glut...

Descripción completa

Detalles Bibliográficos
Autores principales: Pike Winer, Lisa S., Wu, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215881/
https://www.ncbi.nlm.nih.gov/pubmed/25360519
http://dx.doi.org/10.1371/journal.pone.0109916
_version_ 1782342168939069440
author Pike Winer, Lisa S.
Wu, Min
author_facet Pike Winer, Lisa S.
Wu, Min
author_sort Pike Winer, Lisa S.
collection PubMed
description Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glutamine, and fatty acids. Using the XF Extracellular Flux analyzer, these methods measure, in real-time, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of living cells in a microplate as they respond to substrates and metabolic perturbation agents. In proof-of-principle experiments, we analyzed substrate flux and mitochondrial bioenergetics of two human glioblastoma cell lines, SF188s and SF188f, which were derived from the same parental cell line but proliferate at slow and fast rates, respectively. These analyses led to three interesting observations: 1) both cell lines respired effectively with substantial endogenous substrate respiration; 2) SF188f cells underwent a significant shift from glycolytic to oxidative metabolism, along with a high rate of glutamine oxidation relative to SF188s cells; and 3) the mitochondrial proton leak-linked respiration of SF188f cells increased significantly compared to SF188s cells. It is plausible that the proton leak of SF188f cells may play a role in allowing continuous glutamine-fueled anaplerotic TCA cycle flux by partially uncoupling the TCA cycle from oxidative phosphorylation. Taken together, these rapid, sensitive and high-throughput substrate flux analysis methods introduce highly valuable approaches for developing a greater understanding of genetic and epigenetic pathways that regulate cellular metabolism, and the development of therapies that target cancer metabolism.
format Online
Article
Text
id pubmed-4215881
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-42158812014-11-05 Rapid Analysis of Glycolytic and Oxidative Substrate Flux of Cancer Cells in a Microplate Pike Winer, Lisa S. Wu, Min PLoS One Research Article Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glutamine, and fatty acids. Using the XF Extracellular Flux analyzer, these methods measure, in real-time, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of living cells in a microplate as they respond to substrates and metabolic perturbation agents. In proof-of-principle experiments, we analyzed substrate flux and mitochondrial bioenergetics of two human glioblastoma cell lines, SF188s and SF188f, which were derived from the same parental cell line but proliferate at slow and fast rates, respectively. These analyses led to three interesting observations: 1) both cell lines respired effectively with substantial endogenous substrate respiration; 2) SF188f cells underwent a significant shift from glycolytic to oxidative metabolism, along with a high rate of glutamine oxidation relative to SF188s cells; and 3) the mitochondrial proton leak-linked respiration of SF188f cells increased significantly compared to SF188s cells. It is plausible that the proton leak of SF188f cells may play a role in allowing continuous glutamine-fueled anaplerotic TCA cycle flux by partially uncoupling the TCA cycle from oxidative phosphorylation. Taken together, these rapid, sensitive and high-throughput substrate flux analysis methods introduce highly valuable approaches for developing a greater understanding of genetic and epigenetic pathways that regulate cellular metabolism, and the development of therapies that target cancer metabolism. Public Library of Science 2014-10-31 /pmc/articles/PMC4215881/ /pubmed/25360519 http://dx.doi.org/10.1371/journal.pone.0109916 Text en © 2014 Pike Winer, Wu http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Pike Winer, Lisa S.
Wu, Min
Rapid Analysis of Glycolytic and Oxidative Substrate Flux of Cancer Cells in a Microplate
title Rapid Analysis of Glycolytic and Oxidative Substrate Flux of Cancer Cells in a Microplate
title_full Rapid Analysis of Glycolytic and Oxidative Substrate Flux of Cancer Cells in a Microplate
title_fullStr Rapid Analysis of Glycolytic and Oxidative Substrate Flux of Cancer Cells in a Microplate
title_full_unstemmed Rapid Analysis of Glycolytic and Oxidative Substrate Flux of Cancer Cells in a Microplate
title_short Rapid Analysis of Glycolytic and Oxidative Substrate Flux of Cancer Cells in a Microplate
title_sort rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215881/
https://www.ncbi.nlm.nih.gov/pubmed/25360519
http://dx.doi.org/10.1371/journal.pone.0109916
work_keys_str_mv AT pikewinerlisas rapidanalysisofglycolyticandoxidativesubstratefluxofcancercellsinamicroplate
AT wumin rapidanalysisofglycolyticandoxidativesubstratefluxofcancercellsinamicroplate