Cargando…

Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane

We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imagin...

Descripción completa

Detalles Bibliográficos
Autores principales: Devauges, Viviane, Matthews, Daniel R., Aluko, Justin, Nedbal, Jakub, Levitt, James A., Poland, Simon P., Coban, Oana, Weitsman, Gregory, Monypenny, James, Ng, Tony, Ameer-Beg, Simon M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215982/
https://www.ncbi.nlm.nih.gov/pubmed/25360776
http://dx.doi.org/10.1371/journal.pone.0110695
_version_ 1782342185833725952
author Devauges, Viviane
Matthews, Daniel R.
Aluko, Justin
Nedbal, Jakub
Levitt, James A.
Poland, Simon P.
Coban, Oana
Weitsman, Gregory
Monypenny, James
Ng, Tony
Ameer-Beg, Simon M.
author_facet Devauges, Viviane
Matthews, Daniel R.
Aluko, Justin
Nedbal, Jakub
Levitt, James A.
Poland, Simon P.
Coban, Oana
Weitsman, Gregory
Monypenny, James
Ng, Tony
Ameer-Beg, Simon M.
author_sort Devauges, Viviane
collection PubMed
description We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.
format Online
Article
Text
id pubmed-4215982
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-42159822014-11-05 Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane Devauges, Viviane Matthews, Daniel R. Aluko, Justin Nedbal, Jakub Levitt, James A. Poland, Simon P. Coban, Oana Weitsman, Gregory Monypenny, James Ng, Tony Ameer-Beg, Simon M. PLoS One Research Article We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor. Public Library of Science 2014-10-31 /pmc/articles/PMC4215982/ /pubmed/25360776 http://dx.doi.org/10.1371/journal.pone.0110695 Text en © 2014 Devauges et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Devauges, Viviane
Matthews, Daniel R.
Aluko, Justin
Nedbal, Jakub
Levitt, James A.
Poland, Simon P.
Coban, Oana
Weitsman, Gregory
Monypenny, James
Ng, Tony
Ameer-Beg, Simon M.
Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane
title Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane
title_full Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane
title_fullStr Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane
title_full_unstemmed Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane
title_short Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane
title_sort steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of fret at the plasma membrane
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215982/
https://www.ncbi.nlm.nih.gov/pubmed/25360776
http://dx.doi.org/10.1371/journal.pone.0110695
work_keys_str_mv AT devaugesviviane steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane
AT matthewsdanielr steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane
AT alukojustin steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane
AT nedbaljakub steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane
AT levittjamesa steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane
AT polandsimonp steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane
AT cobanoana steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane
AT weitsmangregory steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane
AT monypennyjames steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane
AT ngtony steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane
AT ameerbegsimonm steadystateacceptorfluorescenceanisotropyimagingunderevanescentexcitationforvisualisationoffretattheplasmamembrane