Cargando…
Modeling Signal Transduction from Protein Phosphorylation to Gene Expression
BACKGROUND: Signaling networks are of great importance for us to understand the cell’s regulatory mechanism. The rise of large-scale genomic and proteomic data, and prior biological knowledge has paved the way for the reconstruction and discovery of novel signaling pathways in a data-driven manner....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216050/ https://www.ncbi.nlm.nih.gov/pubmed/25392684 http://dx.doi.org/10.4137/CIN.S13883 |
_version_ | 1782342202058342400 |
---|---|
author | Cai, Chunhui Chen, Lujia Jiang, Xia Lu, Xinghua |
author_facet | Cai, Chunhui Chen, Lujia Jiang, Xia Lu, Xinghua |
author_sort | Cai, Chunhui |
collection | PubMed |
description | BACKGROUND: Signaling networks are of great importance for us to understand the cell’s regulatory mechanism. The rise of large-scale genomic and proteomic data, and prior biological knowledge has paved the way for the reconstruction and discovery of novel signaling pathways in a data-driven manner. In this study, we investigate computational methods that integrate proteomics and transcriptomic data to identify signaling pathways transmitting signals in response to specific stimuli. Such methods can be applied to cancer genomic data to infer perturbed signaling pathways. METHOD: We proposed a novel Bayesian Network (BN) framework to integrate transcriptomic data with proteomic data reflecting protein phosphorylation states for the purpose of identifying the pathways transmitting the signal of diverse stimuli in rat and human cells. We represented the proteins and genes as nodes in a BN in which edges reflect the regulatory relationship between signaling proteins. We designed an efficient inference algorithm that incorporated the prior knowledge of pathways and searched for a network structure in a data-driven manner. RESULTS: We applied our method to infer rat and human specific networks given gene expression and proteomic datasets. We were able to effectively identify sparse signaling networks that modeled the observed transcriptomic and proteomic data. Our methods were able to identify distinct signaling pathways for rat and human cells in a data-driven manner, based on the facts that rat and human cells exhibited distinct transcriptomic and proteomics responses to a common set of stimuli. Our model performed well in the SBV IMPROVER challenge in comparison to other models addressing the same task. The capability of inferring signaling pathways in a data-driven fashion may contribute to cancer research by identifying distinct aberrations in signaling pathways underlying heterogeneous cancers subtypes. |
format | Online Article Text |
id | pubmed-4216050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Libertas Academica |
record_format | MEDLINE/PubMed |
spelling | pubmed-42160502014-11-12 Modeling Signal Transduction from Protein Phosphorylation to Gene Expression Cai, Chunhui Chen, Lujia Jiang, Xia Lu, Xinghua Cancer Inform Review BACKGROUND: Signaling networks are of great importance for us to understand the cell’s regulatory mechanism. The rise of large-scale genomic and proteomic data, and prior biological knowledge has paved the way for the reconstruction and discovery of novel signaling pathways in a data-driven manner. In this study, we investigate computational methods that integrate proteomics and transcriptomic data to identify signaling pathways transmitting signals in response to specific stimuli. Such methods can be applied to cancer genomic data to infer perturbed signaling pathways. METHOD: We proposed a novel Bayesian Network (BN) framework to integrate transcriptomic data with proteomic data reflecting protein phosphorylation states for the purpose of identifying the pathways transmitting the signal of diverse stimuli in rat and human cells. We represented the proteins and genes as nodes in a BN in which edges reflect the regulatory relationship between signaling proteins. We designed an efficient inference algorithm that incorporated the prior knowledge of pathways and searched for a network structure in a data-driven manner. RESULTS: We applied our method to infer rat and human specific networks given gene expression and proteomic datasets. We were able to effectively identify sparse signaling networks that modeled the observed transcriptomic and proteomic data. Our methods were able to identify distinct signaling pathways for rat and human cells in a data-driven manner, based on the facts that rat and human cells exhibited distinct transcriptomic and proteomics responses to a common set of stimuli. Our model performed well in the SBV IMPROVER challenge in comparison to other models addressing the same task. The capability of inferring signaling pathways in a data-driven fashion may contribute to cancer research by identifying distinct aberrations in signaling pathways underlying heterogeneous cancers subtypes. Libertas Academica 2014-10-13 /pmc/articles/PMC4216050/ /pubmed/25392684 http://dx.doi.org/10.4137/CIN.S13883 Text en © 2014 the author(s), publisher and licensee Libertas Academica Ltd. This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License. |
spellingShingle | Review Cai, Chunhui Chen, Lujia Jiang, Xia Lu, Xinghua Modeling Signal Transduction from Protein Phosphorylation to Gene Expression |
title | Modeling Signal Transduction from Protein Phosphorylation to Gene Expression |
title_full | Modeling Signal Transduction from Protein Phosphorylation to Gene Expression |
title_fullStr | Modeling Signal Transduction from Protein Phosphorylation to Gene Expression |
title_full_unstemmed | Modeling Signal Transduction from Protein Phosphorylation to Gene Expression |
title_short | Modeling Signal Transduction from Protein Phosphorylation to Gene Expression |
title_sort | modeling signal transduction from protein phosphorylation to gene expression |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216050/ https://www.ncbi.nlm.nih.gov/pubmed/25392684 http://dx.doi.org/10.4137/CIN.S13883 |
work_keys_str_mv | AT caichunhui modelingsignaltransductionfromproteinphosphorylationtogeneexpression AT chenlujia modelingsignaltransductionfromproteinphosphorylationtogeneexpression AT jiangxia modelingsignaltransductionfromproteinphosphorylationtogeneexpression AT luxinghua modelingsignaltransductionfromproteinphosphorylationtogeneexpression |