Cargando…
Product Inhibition in Native-State Proteolysis
The proteolysis kinetics of intact proteins by nonspecific proteases provides valuable information on transient partial unfolding of proteins under native conditions. Native-state proteolysis is an approach to utilize the proteolysis kinetics to assess the energetics of partial unfolding in a quanti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216078/ https://www.ncbi.nlm.nih.gov/pubmed/25360755 http://dx.doi.org/10.1371/journal.pone.0111416 |
_version_ | 1782342206591336448 |
---|---|
author | Kasper, Joseph R. Andrews, Elizabeth C. Park, Chiwook |
author_facet | Kasper, Joseph R. Andrews, Elizabeth C. Park, Chiwook |
author_sort | Kasper, Joseph R. |
collection | PubMed |
description | The proteolysis kinetics of intact proteins by nonspecific proteases provides valuable information on transient partial unfolding of proteins under native conditions. Native-state proteolysis is an approach to utilize the proteolysis kinetics to assess the energetics of partial unfolding in a quantitative manner. In native-state proteolysis, folded proteins are incubated with nonspecific proteases, and the rate of proteolysis is determined from the disappearance of the intact protein. We report here that proteolysis of intact proteins by nonspecific proteases, thermolysin and subtilisin deviates from first-order kinetics. First-order kinetics has been assumed for the analysis of native-state proteolysis. By analyzing the kinetics of proteolysis with varying concentrations of substrate proteins and also with cleavage products, we found that the deviation from first-order kinetics results from product inhibition. A kinetic model including competitive product inhibition agrees well with the proteolysis time course and allows us to determine the uninhibited rate constant for proteolysis as well as the apparent inhibition constant. Our finding suggests that the likelihood of product inhibition must be considered for quantitative assessment of proteolysis kinetics. |
format | Online Article Text |
id | pubmed-4216078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42160782014-11-05 Product Inhibition in Native-State Proteolysis Kasper, Joseph R. Andrews, Elizabeth C. Park, Chiwook PLoS One Research Article The proteolysis kinetics of intact proteins by nonspecific proteases provides valuable information on transient partial unfolding of proteins under native conditions. Native-state proteolysis is an approach to utilize the proteolysis kinetics to assess the energetics of partial unfolding in a quantitative manner. In native-state proteolysis, folded proteins are incubated with nonspecific proteases, and the rate of proteolysis is determined from the disappearance of the intact protein. We report here that proteolysis of intact proteins by nonspecific proteases, thermolysin and subtilisin deviates from first-order kinetics. First-order kinetics has been assumed for the analysis of native-state proteolysis. By analyzing the kinetics of proteolysis with varying concentrations of substrate proteins and also with cleavage products, we found that the deviation from first-order kinetics results from product inhibition. A kinetic model including competitive product inhibition agrees well with the proteolysis time course and allows us to determine the uninhibited rate constant for proteolysis as well as the apparent inhibition constant. Our finding suggests that the likelihood of product inhibition must be considered for quantitative assessment of proteolysis kinetics. Public Library of Science 2014-10-31 /pmc/articles/PMC4216078/ /pubmed/25360755 http://dx.doi.org/10.1371/journal.pone.0111416 Text en © 2014 Kasper et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kasper, Joseph R. Andrews, Elizabeth C. Park, Chiwook Product Inhibition in Native-State Proteolysis |
title | Product Inhibition in Native-State Proteolysis |
title_full | Product Inhibition in Native-State Proteolysis |
title_fullStr | Product Inhibition in Native-State Proteolysis |
title_full_unstemmed | Product Inhibition in Native-State Proteolysis |
title_short | Product Inhibition in Native-State Proteolysis |
title_sort | product inhibition in native-state proteolysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216078/ https://www.ncbi.nlm.nih.gov/pubmed/25360755 http://dx.doi.org/10.1371/journal.pone.0111416 |
work_keys_str_mv | AT kasperjosephr productinhibitioninnativestateproteolysis AT andrewselizabethc productinhibitioninnativestateproteolysis AT parkchiwook productinhibitioninnativestateproteolysis |