Cargando…
Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response
[Image: see text] Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput micros...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216222/ https://www.ncbi.nlm.nih.gov/pubmed/24923782 http://dx.doi.org/10.1021/nn502356f |
_version_ | 1782342236345729024 |
---|---|
author | Ware, Matthew J. Godin, Biana Singh, Neenu Majithia, Ravish Shamsudeen, Sabeel Serda, Rita E. Meissner, Kenith E. Rees, Paul Summers, Huw D. |
author_facet | Ware, Matthew J. Godin, Biana Singh, Neenu Majithia, Ravish Shamsudeen, Sabeel Serda, Rita E. Meissner, Kenith E. Rees, Paul Summers, Huw D. |
author_sort | Ware, Matthew J. |
collection | PubMed |
description | [Image: see text] Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used in this endeavor. Mass measurement with single-cell resolution provides statistically robust assessments of cell heterogeneity, while the addition of a temporal element allows assessment of separate processes leading to deconvolution of the effects of particle supply and biological response. We provide a specific demonstration of the approach, in vitro, through time-resolved measurement of fibroblast cell (HFF-1) death caused by exposure to cationic nanoparticles. The results show that heterogeneity in cell area is the major source of variability with area-dependent nanoparticle capture rates determining the time of cell death and hence the form of the exposure–response characteristic. Moreover, due to the particulate nature of the nanoparticle suspension, there is a reduction in the particle concentration over the course of the experiment, eventually causing saturation in the level of measured biological outcome. A generalized mathematical description of the system is proposed, based on a simple model of particle depletion from a finite supply reservoir. This captures the essential aspects of the nanoparticle–cell interaction dynamics and accurately predicts the population exposure–response curves from individual cell heterogeneity distributions. |
format | Online Article Text |
id | pubmed-4216222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-42162222014-11-06 Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response Ware, Matthew J. Godin, Biana Singh, Neenu Majithia, Ravish Shamsudeen, Sabeel Serda, Rita E. Meissner, Kenith E. Rees, Paul Summers, Huw D. ACS Nano [Image: see text] Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used in this endeavor. Mass measurement with single-cell resolution provides statistically robust assessments of cell heterogeneity, while the addition of a temporal element allows assessment of separate processes leading to deconvolution of the effects of particle supply and biological response. We provide a specific demonstration of the approach, in vitro, through time-resolved measurement of fibroblast cell (HFF-1) death caused by exposure to cationic nanoparticles. The results show that heterogeneity in cell area is the major source of variability with area-dependent nanoparticle capture rates determining the time of cell death and hence the form of the exposure–response characteristic. Moreover, due to the particulate nature of the nanoparticle suspension, there is a reduction in the particle concentration over the course of the experiment, eventually causing saturation in the level of measured biological outcome. A generalized mathematical description of the system is proposed, based on a simple model of particle depletion from a finite supply reservoir. This captures the essential aspects of the nanoparticle–cell interaction dynamics and accurately predicts the population exposure–response curves from individual cell heterogeneity distributions. American Chemical Society 2014-06-13 2014-07-22 /pmc/articles/PMC4216222/ /pubmed/24923782 http://dx.doi.org/10.1021/nn502356f Text en Copyright © 2014 American Chemical Society Terms of Use CC-BY (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) |
spellingShingle | Ware, Matthew J. Godin, Biana Singh, Neenu Majithia, Ravish Shamsudeen, Sabeel Serda, Rita E. Meissner, Kenith E. Rees, Paul Summers, Huw D. Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response |
title | Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response |
title_full | Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response |
title_fullStr | Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response |
title_full_unstemmed | Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response |
title_short | Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response |
title_sort | analysis of the influence of cell heterogeneity on nanoparticle dose response |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216222/ https://www.ncbi.nlm.nih.gov/pubmed/24923782 http://dx.doi.org/10.1021/nn502356f |
work_keys_str_mv | AT warematthewj analysisoftheinfluenceofcellheterogeneityonnanoparticledoseresponse AT godinbiana analysisoftheinfluenceofcellheterogeneityonnanoparticledoseresponse AT singhneenu analysisoftheinfluenceofcellheterogeneityonnanoparticledoseresponse AT majithiaravish analysisoftheinfluenceofcellheterogeneityonnanoparticledoseresponse AT shamsudeensabeel analysisoftheinfluenceofcellheterogeneityonnanoparticledoseresponse AT serdaritae analysisoftheinfluenceofcellheterogeneityonnanoparticledoseresponse AT meissnerkenithe analysisoftheinfluenceofcellheterogeneityonnanoparticledoseresponse AT reespaul analysisoftheinfluenceofcellheterogeneityonnanoparticledoseresponse AT summershuwd analysisoftheinfluenceofcellheterogeneityonnanoparticledoseresponse |