Cargando…
New Formulae for the High-Order Derivatives of Some Jacobi Polynomials: An Application to Some High-Order Boundary Value Problems
This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomia...
Autor principal: | Abd-Elhameed, W. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216719/ https://www.ncbi.nlm.nih.gov/pubmed/25386599 http://dx.doi.org/10.1155/2014/456501 |
Ejemplares similares
-
New algorithms for solving third- and fifth-order two point boundary value problems based on nonsymmetric generalized Jacobi Petrov–Galerkin method
por: Doha, E.H., et al.
Publicado: (2015) -
Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials
por: Askey, Richard, et al.
Publicado: (1985) -
Two Legendre-Dual-Petrov-Galerkin Algorithms for Solving the Integrated Forms of High Odd-Order Boundary Value Problems
por: Abd-Elhameed, Waleed M., et al.
Publicado: (2014) -
Representation of [Formula: see text] -Bernstein polynomials in terms of [Formula: see text] -Jacobi polynomials
por: Soleyman, F, et al.
Publicado: (2017) -
An inequality on the zeros of Jacobi polynomials based on an improvement of Hilb's formula
por: Martin, A
Publicado: (1976)