Cargando…
Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein
BACKGROUND: High-density lipoprotein (HDL) has been shown to confer cardiovascular protection in clinical and epidemiologic studies. Emerging evidence suggests that many of the cardioprotective functions of HDL may be due to the phospholipid sphingosine-1-phosphate (S1P). PRESENTATION OF THE HYPOTHE...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216853/ https://www.ncbi.nlm.nih.gov/pubmed/25339382 http://dx.doi.org/10.1186/1476-511X-13-163 |
_version_ | 1782342320170991616 |
---|---|
author | Wang, Fan Ye, Ping |
author_facet | Wang, Fan Ye, Ping |
author_sort | Wang, Fan |
collection | PubMed |
description | BACKGROUND: High-density lipoprotein (HDL) has been shown to confer cardiovascular protection in clinical and epidemiologic studies. Emerging evidence suggests that many of the cardioprotective functions of HDL may be due to the phospholipid sphingosine-1-phosphate (S1P). PRESENTATION OF THE HYPOTHESIS: HDL-S1P binds to S1P receptors in the heart, activating PI3K/Akt signaling and myocyte survival. PI3K/Akt is a classic signaling modulator of autophagy. Excessive autophagy due to cell death and cardiomyocyte loss may contribute to impaired heart function during pressure overload-induced heart failure. Therefore, we hypothesize that HDL-S1P may suppress excessive autophagy of cardiomyocytes through activation of PI3K/Akt signaling. Further, reconstituted HDL (including S1P) may protect heart function during pressure overload-induced heart failure. TESTING THE HYPOTHESIS: We will design the following experiments to test this hypothesis. (1) We will treat cells and mice with PI-3 kinase inhibitors to examine if HDL-S1P downregulates expression of Autophagy-related genes (ATGs) and proteins via activation of PI3K/Akt signaling. (2) We will use siRNA against S1P receptors or inhibitors of S1P receptors to determine which types of S1P receptors participate in this mechanism. (3) We will also examine if reconstituted HDL (including S1P) improves heart function during pressure overload-induced heart failure by suppressing excessive autophagy of cardiomyocytes through activation of PI3K/Akt signaling. IMPLICATIONS OF THE HYPOTHESIS: Understanding the autophagy signaling pathway modulated by HDL-S1P will make a major contribution to the field by identifying a novel mechanism for cardiovascular protection of high-density lipoprotein. Further, using reconstituted HDL to improve heart function would provide a novel therapeutic approach for pressure overload–induced heart failure. |
format | Online Article Text |
id | pubmed-4216853 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42168532014-11-04 Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein Wang, Fan Ye, Ping Lipids Health Dis Hypothesis BACKGROUND: High-density lipoprotein (HDL) has been shown to confer cardiovascular protection in clinical and epidemiologic studies. Emerging evidence suggests that many of the cardioprotective functions of HDL may be due to the phospholipid sphingosine-1-phosphate (S1P). PRESENTATION OF THE HYPOTHESIS: HDL-S1P binds to S1P receptors in the heart, activating PI3K/Akt signaling and myocyte survival. PI3K/Akt is a classic signaling modulator of autophagy. Excessive autophagy due to cell death and cardiomyocyte loss may contribute to impaired heart function during pressure overload-induced heart failure. Therefore, we hypothesize that HDL-S1P may suppress excessive autophagy of cardiomyocytes through activation of PI3K/Akt signaling. Further, reconstituted HDL (including S1P) may protect heart function during pressure overload-induced heart failure. TESTING THE HYPOTHESIS: We will design the following experiments to test this hypothesis. (1) We will treat cells and mice with PI-3 kinase inhibitors to examine if HDL-S1P downregulates expression of Autophagy-related genes (ATGs) and proteins via activation of PI3K/Akt signaling. (2) We will use siRNA against S1P receptors or inhibitors of S1P receptors to determine which types of S1P receptors participate in this mechanism. (3) We will also examine if reconstituted HDL (including S1P) improves heart function during pressure overload-induced heart failure by suppressing excessive autophagy of cardiomyocytes through activation of PI3K/Akt signaling. IMPLICATIONS OF THE HYPOTHESIS: Understanding the autophagy signaling pathway modulated by HDL-S1P will make a major contribution to the field by identifying a novel mechanism for cardiovascular protection of high-density lipoprotein. Further, using reconstituted HDL to improve heart function would provide a novel therapeutic approach for pressure overload–induced heart failure. BioMed Central 2014-10-22 /pmc/articles/PMC4216853/ /pubmed/25339382 http://dx.doi.org/10.1186/1476-511X-13-163 Text en © Wang and Ye; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Hypothesis Wang, Fan Ye, Ping Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein |
title | Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein |
title_full | Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein |
title_fullStr | Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein |
title_full_unstemmed | Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein |
title_short | Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein |
title_sort | improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein |
topic | Hypothesis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216853/ https://www.ncbi.nlm.nih.gov/pubmed/25339382 http://dx.doi.org/10.1186/1476-511X-13-163 |
work_keys_str_mv | AT wangfan improvingheartfunctionbymodulatingmyocardiocyteautophagyapossiblenovelmechanismforcardiovascularprotectionofhighdensitylipoprotein AT yeping improvingheartfunctionbymodulatingmyocardiocyteautophagyapossiblenovelmechanismforcardiovascularprotectionofhighdensitylipoprotein |