Cargando…
Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication
Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216916/ https://www.ncbi.nlm.nih.gov/pubmed/25228659 http://dx.doi.org/10.1101/gr.174789.114 |
_version_ | 1782342327456497664 |
---|---|
author | Shinbrot, Eve Henninger, Erin E. Weinhold, Nils Covington, Kyle R. Göksenin, A. Yasemin Schultz, Nikolaus Chao, Hsu Doddapaneni, HarshaVardhan Muzny, Donna M. Gibbs, Richard A. Sander, Chris Pursell, Zachary F. Wheeler, David A. |
author_facet | Shinbrot, Eve Henninger, Erin E. Weinhold, Nils Covington, Kyle R. Göksenin, A. Yasemin Schultz, Nikolaus Chao, Hsu Doddapaneni, HarshaVardhan Muzny, Donna M. Gibbs, Richard A. Sander, Chris Pursell, Zachary F. Wheeler, David A. |
author_sort | Shinbrot, Eve |
collection | PubMed |
description | Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. |
format | Online Article Text |
id | pubmed-4216916 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-42169162015-05-01 Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication Shinbrot, Eve Henninger, Erin E. Weinhold, Nils Covington, Kyle R. Göksenin, A. Yasemin Schultz, Nikolaus Chao, Hsu Doddapaneni, HarshaVardhan Muzny, Donna M. Gibbs, Richard A. Sander, Chris Pursell, Zachary F. Wheeler, David A. Genome Res Research Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. Cold Spring Harbor Laboratory Press 2014-11 /pmc/articles/PMC4216916/ /pubmed/25228659 http://dx.doi.org/10.1101/gr.174789.114 Text en Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Research Shinbrot, Eve Henninger, Erin E. Weinhold, Nils Covington, Kyle R. Göksenin, A. Yasemin Schultz, Nikolaus Chao, Hsu Doddapaneni, HarshaVardhan Muzny, Donna M. Gibbs, Richard A. Sander, Chris Pursell, Zachary F. Wheeler, David A. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication |
title | Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication |
title_full | Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication |
title_fullStr | Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication |
title_full_unstemmed | Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication |
title_short | Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication |
title_sort | exonuclease mutations in dna polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216916/ https://www.ncbi.nlm.nih.gov/pubmed/25228659 http://dx.doi.org/10.1101/gr.174789.114 |
work_keys_str_mv | AT shinbroteve exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT henningererine exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT weinholdnils exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT covingtonkyler exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT gokseninayasemin exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT schultznikolaus exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT chaohsu exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT doddapaneniharshavardhan exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT muznydonnam exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT gibbsricharda exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT sanderchris exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT pursellzacharyf exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication AT wheelerdavida exonucleasemutationsindnapolymeraseepsilonrevealreplicationstrandspecificmutationpatternsandhumanoriginsofreplication |