Cargando…
Burkholderia pseudomallei in soil samples from an oceanarium in Hong Kong detected using a sensitive PCR assay
Melioidosis, caused by Burkholderia pseudomallei, is an emerging infectious disease with an expanding geographical distribution. Although assessment of the environmental load of B. pseudomallei is important for risk assessment in humans or animals in endemic areas, traditional methods of bacterial c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217092/ https://www.ncbi.nlm.nih.gov/pubmed/26038496 http://dx.doi.org/10.1038/emi.2014.69 |
Sumario: | Melioidosis, caused by Burkholderia pseudomallei, is an emerging infectious disease with an expanding geographical distribution. Although assessment of the environmental load of B. pseudomallei is important for risk assessment in humans or animals in endemic areas, traditional methods of bacterial culture for isolation have low sensitivities and are labor-intensive. Using a specific polymerase chain reaction (PCR) assay targeting a Tat domain protein in comparison with a bacterial culture method, we examined the prevalence of B. pseudomallei in soil samples from an oceanarium in Hong Kong where captive marine mammals and birds have contracted melioidosis. Among 1420 soil samples collected from various sites in the oceanarium over a 15-month period, B. pseudomallei was detected in nine (0.6%) soil samples using bacterial culture, whereas it was detected in 96 (6.8%) soil samples using the specific PCR assay confirmed by sequencing. The PCR-positive samples were detected during various months, with higher detection rates observed during summer months. Positive PCR detection was significantly correlated with ambient temperature (P<0.0001) and relative humidity (P=0.011) but not with daily rainfall (P=0.241) or a recent typhoon (P=0.787). PCR-positive samples were obtained from all sampling locations, with the highest detection rate in the valley. Our results suggest that B. pseudomallei is prevalent and endemic in the oceanarium. The present PCR assay is more sensitive than the bacterial culture method, and it may be used to help better assess the transmission of melioidosis and to design infection control measures for captive animals in this unique and understudied environment. |
---|