Cargando…
The vitamin D system is deregulated in pancreatic diseases
The vitamin D system is deregulated during development and progression of several cancer types. Data on the expression of the vitamin D system in the diseased pancreas are missing. The aim of this study was to investigate the expression of the vitamin D receptor (VDR), 1,25-dihydroxyvitamin D(3) 24-...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217145/ https://www.ncbi.nlm.nih.gov/pubmed/25090635 http://dx.doi.org/10.1016/j.jsbmb.2014.07.011 |
_version_ | 1782342356053262336 |
---|---|
author | Hummel, Doris Aggarwal, Abhishek Borka, Katalin Bajna, Erika Kállay, Enikö Horváth, Henrik Csaba |
author_facet | Hummel, Doris Aggarwal, Abhishek Borka, Katalin Bajna, Erika Kállay, Enikö Horváth, Henrik Csaba |
author_sort | Hummel, Doris |
collection | PubMed |
description | The vitamin D system is deregulated during development and progression of several cancer types. Data on the expression of the vitamin D system in the diseased pancreas are missing. The aim of this study was to investigate the expression of the vitamin D receptor (VDR), 1,25-dihydroxyvitamin D(3) 24-hydroxylase (CYP24A1), and the calcium-sensing receptor (CaSR), a vitamin D target gene, in the different regions of the pancreas in patients with chronic pancreatitis (n = 6) and pancreatic ductal adenocarcinomas (PDAC) (n = 17). We analyzed the expression of these genes at mRNA and protein level with quantitative real-time RT-PCR and immunostaining. mRNA expression of CYP24A1 and VDR was significantly increased in tumors compared with the adjacent non-tumorous tissue (p < 0.01), while CaSR mRNA expression decreased. Both the VDR and the CaSR protein were highly expressed in the endocrine compared with the exocrine pancreas. In CP the CYP24A1 expression was highest in the endocrine pancreas, while in PDACs in the transformed ducts. In the PDAC patients CYP24A1 expression in the islets was significantly lower than in CP patients. Our data suggest that during ductal adenocarcinoma development the vitamin D system in the pancreas becomes deregulated on two levels: in the islets CYP24A1 expression decreases weakening the negative feedback regulation of the vitamin D-dependent insulin synthesis/secretion. In the transformed ducts CYP24A1 expression increases, impairing the antiproliferative effect of vitamin D in these cells. |
format | Online Article Text |
id | pubmed-4217145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Pergamon |
record_format | MEDLINE/PubMed |
spelling | pubmed-42171452014-11-06 The vitamin D system is deregulated in pancreatic diseases Hummel, Doris Aggarwal, Abhishek Borka, Katalin Bajna, Erika Kállay, Enikö Horváth, Henrik Csaba J Steroid Biochem Mol Biol Article The vitamin D system is deregulated during development and progression of several cancer types. Data on the expression of the vitamin D system in the diseased pancreas are missing. The aim of this study was to investigate the expression of the vitamin D receptor (VDR), 1,25-dihydroxyvitamin D(3) 24-hydroxylase (CYP24A1), and the calcium-sensing receptor (CaSR), a vitamin D target gene, in the different regions of the pancreas in patients with chronic pancreatitis (n = 6) and pancreatic ductal adenocarcinomas (PDAC) (n = 17). We analyzed the expression of these genes at mRNA and protein level with quantitative real-time RT-PCR and immunostaining. mRNA expression of CYP24A1 and VDR was significantly increased in tumors compared with the adjacent non-tumorous tissue (p < 0.01), while CaSR mRNA expression decreased. Both the VDR and the CaSR protein were highly expressed in the endocrine compared with the exocrine pancreas. In CP the CYP24A1 expression was highest in the endocrine pancreas, while in PDACs in the transformed ducts. In the PDAC patients CYP24A1 expression in the islets was significantly lower than in CP patients. Our data suggest that during ductal adenocarcinoma development the vitamin D system in the pancreas becomes deregulated on two levels: in the islets CYP24A1 expression decreases weakening the negative feedback regulation of the vitamin D-dependent insulin synthesis/secretion. In the transformed ducts CYP24A1 expression increases, impairing the antiproliferative effect of vitamin D in these cells. Pergamon 2014-10 /pmc/articles/PMC4217145/ /pubmed/25090635 http://dx.doi.org/10.1016/j.jsbmb.2014.07.011 Text en © 2014 The Authors https://creativecommons.org/licenses/by/3.0/This work is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/) . |
spellingShingle | Article Hummel, Doris Aggarwal, Abhishek Borka, Katalin Bajna, Erika Kállay, Enikö Horváth, Henrik Csaba The vitamin D system is deregulated in pancreatic diseases |
title | The vitamin D system is deregulated in pancreatic diseases |
title_full | The vitamin D system is deregulated in pancreatic diseases |
title_fullStr | The vitamin D system is deregulated in pancreatic diseases |
title_full_unstemmed | The vitamin D system is deregulated in pancreatic diseases |
title_short | The vitamin D system is deregulated in pancreatic diseases |
title_sort | vitamin d system is deregulated in pancreatic diseases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217145/ https://www.ncbi.nlm.nih.gov/pubmed/25090635 http://dx.doi.org/10.1016/j.jsbmb.2014.07.011 |
work_keys_str_mv | AT hummeldoris thevitamindsystemisderegulatedinpancreaticdiseases AT aggarwalabhishek thevitamindsystemisderegulatedinpancreaticdiseases AT borkakatalin thevitamindsystemisderegulatedinpancreaticdiseases AT bajnaerika thevitamindsystemisderegulatedinpancreaticdiseases AT kallayeniko thevitamindsystemisderegulatedinpancreaticdiseases AT horvathhenrikcsaba thevitamindsystemisderegulatedinpancreaticdiseases AT hummeldoris vitamindsystemisderegulatedinpancreaticdiseases AT aggarwalabhishek vitamindsystemisderegulatedinpancreaticdiseases AT borkakatalin vitamindsystemisderegulatedinpancreaticdiseases AT bajnaerika vitamindsystemisderegulatedinpancreaticdiseases AT kallayeniko vitamindsystemisderegulatedinpancreaticdiseases AT horvathhenrikcsaba vitamindsystemisderegulatedinpancreaticdiseases |