Cargando…

7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells

BACKGROUND: Connexin43 (Cx43) is an integral membrane protein that forms intercellular channels called gap junctions. Intercellular communication in the eye lens relies on an extensive network of gap junctions essential for the maintenance of lens transparency. The association of Cx43 with cholester...

Descripción completa

Detalles Bibliográficos
Autores principales: Girão, Henrique, Catarino, Steve, Pereira, Paulo
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC421750/
https://www.ncbi.nlm.nih.gov/pubmed/15171789
http://dx.doi.org/10.1186/1478-811X-2-2
_version_ 1782121491645595648
author Girão, Henrique
Catarino, Steve
Pereira, Paulo
author_facet Girão, Henrique
Catarino, Steve
Pereira, Paulo
author_sort Girão, Henrique
collection PubMed
description BACKGROUND: Connexin43 (Cx43) is an integral membrane protein that forms intercellular channels called gap junctions. Intercellular communication in the eye lens relies on an extensive network of gap junctions essential for the maintenance of lens transparency. The association of Cx43 with cholesterol enriched lipid raft domains was recently demonstrated. The objective of this study is to assess if products of cholesterol oxidation (oxysterols) affect gap junction intercellular communication (GJIC). RESULTS: Primary cultures of lens epithelial cells (LEC) were incubated with 7-ketocholesterol (7-Keto), 25-hydroxycholesterol (25-OH) or cholesterol and the subcellular distribution of Cx43 was evaluated by immunofluorescence confocal microscopy. The levels of Cx43 present in gap junction plaques were assessed by its insolubility in Triton X-100 and quantified by western blotting. The stability of Cx43 at the plasma membrane following incubation with oxysterols was evaluated by biotinylation of cell surface proteins. Gap junction intercellular communication was evaluated by transfer of the dye Lucifer yellow. The results obtained showed that 7-keto induces an accumulation of Cx43 at the plasma membrane and an increase in intercellular communication through gap junction. However, incubation with cholesterol or 25-OH did not lead to significant alterations on subcellular distribution of Cx43 nor in intercellular communication. Data further suggests that increased intercellular communication results from increased stability of Cx43 at the plasma membrane, presumably forming functional gap-junctions, as suggested by decreased solubility of Cx43 in 1% Triton X-100. The increased stability of Cx43 at the plasma membrane seems to be specific and not related to disruption of endocytic pathway, as demonstrated by dextran uptake. CONCLUSIONS: Results demonstrate, for the first time, that 7-keto induces an increase in gap junction intercellular communication, that is most likely due to an increased stability of protein at the plasma membrane and to increased abundance of Cx43 assembled in gap junction plaques.
format Text
id pubmed-421750
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-4217502004-06-13 7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells Girão, Henrique Catarino, Steve Pereira, Paulo Cell Commun Signal Research BACKGROUND: Connexin43 (Cx43) is an integral membrane protein that forms intercellular channels called gap junctions. Intercellular communication in the eye lens relies on an extensive network of gap junctions essential for the maintenance of lens transparency. The association of Cx43 with cholesterol enriched lipid raft domains was recently demonstrated. The objective of this study is to assess if products of cholesterol oxidation (oxysterols) affect gap junction intercellular communication (GJIC). RESULTS: Primary cultures of lens epithelial cells (LEC) were incubated with 7-ketocholesterol (7-Keto), 25-hydroxycholesterol (25-OH) or cholesterol and the subcellular distribution of Cx43 was evaluated by immunofluorescence confocal microscopy. The levels of Cx43 present in gap junction plaques were assessed by its insolubility in Triton X-100 and quantified by western blotting. The stability of Cx43 at the plasma membrane following incubation with oxysterols was evaluated by biotinylation of cell surface proteins. Gap junction intercellular communication was evaluated by transfer of the dye Lucifer yellow. The results obtained showed that 7-keto induces an accumulation of Cx43 at the plasma membrane and an increase in intercellular communication through gap junction. However, incubation with cholesterol or 25-OH did not lead to significant alterations on subcellular distribution of Cx43 nor in intercellular communication. Data further suggests that increased intercellular communication results from increased stability of Cx43 at the plasma membrane, presumably forming functional gap-junctions, as suggested by decreased solubility of Cx43 in 1% Triton X-100. The increased stability of Cx43 at the plasma membrane seems to be specific and not related to disruption of endocytic pathway, as demonstrated by dextran uptake. CONCLUSIONS: Results demonstrate, for the first time, that 7-keto induces an increase in gap junction intercellular communication, that is most likely due to an increased stability of protein at the plasma membrane and to increased abundance of Cx43 assembled in gap junction plaques. BioMed Central 2004-06-01 /pmc/articles/PMC421750/ /pubmed/15171789 http://dx.doi.org/10.1186/1478-811X-2-2 Text en Copyright © 2004 Girão et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Research
Girão, Henrique
Catarino, Steve
Pereira, Paulo
7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells
title 7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells
title_full 7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells
title_fullStr 7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells
title_full_unstemmed 7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells
title_short 7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells
title_sort 7-ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC421750/
https://www.ncbi.nlm.nih.gov/pubmed/15171789
http://dx.doi.org/10.1186/1478-811X-2-2
work_keys_str_mv AT giraohenrique 7ketocholesterolmodulatesintercellularcommunicationthroughgapjunctioninbovinelensepithelialcells
AT catarinosteve 7ketocholesterolmodulatesintercellularcommunicationthroughgapjunctioninbovinelensepithelialcells
AT pereirapaulo 7ketocholesterolmodulatesintercellularcommunicationthroughgapjunctioninbovinelensepithelialcells