Cargando…
Quantitative Spatial and Temporal Analysis of Fluorescein Angiography Dynamics in the Eye
PURPOSE: We describe a novel approach to analyze fluorescein angiography to investigate fluorescein flow dynamics in the rat posterior retina as well as identify abnormal areas following laser photocoagulation. METHODS: Experiments were undertaken in adult Long Evans rats. Using a rodent retinal cam...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218721/ https://www.ncbi.nlm.nih.gov/pubmed/25365578 http://dx.doi.org/10.1371/journal.pone.0111330 |
_version_ | 1782342464515866624 |
---|---|
author | Hui, Flora Nguyen, Christine T. O. Bedggood, Phillip A. He, Zheng Fish, Rebecca L. Gurrell, Rachel Vingrys, Algis J. Bui, Bang V. |
author_facet | Hui, Flora Nguyen, Christine T. O. Bedggood, Phillip A. He, Zheng Fish, Rebecca L. Gurrell, Rachel Vingrys, Algis J. Bui, Bang V. |
author_sort | Hui, Flora |
collection | PubMed |
description | PURPOSE: We describe a novel approach to analyze fluorescein angiography to investigate fluorescein flow dynamics in the rat posterior retina as well as identify abnormal areas following laser photocoagulation. METHODS: Experiments were undertaken in adult Long Evans rats. Using a rodent retinal camera, videos were acquired at 30 frames per second for 30 seconds following intravenous introduction of sodium fluorescein in a group of control animals (n = 14). Videos were image registered and analyzed using principle components analysis across all pixels in the field. This returns fluorescence intensity profiles from which, the half-rise (time to 50% brightness), half-fall (time for 50% decay) back to an offset (plateau level of fluorescence). We applied this analysis to video fluorescein angiography data collected 30 minutes following laser photocoagulation in a separate group of rats (n = 7). RESULTS: Pixel-by-pixel analysis of video angiography clearly delineates differences in the temporal profiles of arteries, veins and capillaries in the posterior retina. We find no difference in half-rise, half-fall or offset amongst the four quadrants (inferior, nasal, superior, temporal). We also found little difference with eccentricity. By expressing the parameters at each pixel as a function of the number of standard deviation from the average of the entire field, we could clearly identify the spatial extent of the laser injury. CONCLUSIONS: This simple registration and analysis provides a way to monitor the size of vascular injury, to highlight areas of subtle vascular leakage and to quantify vascular dynamics not possible using current fluorescein angiography approaches. This can be applied in both laboratory and clinical settings for in vivo dynamic fluorescent imaging of vasculature. |
format | Online Article Text |
id | pubmed-4218721 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42187212014-11-05 Quantitative Spatial and Temporal Analysis of Fluorescein Angiography Dynamics in the Eye Hui, Flora Nguyen, Christine T. O. Bedggood, Phillip A. He, Zheng Fish, Rebecca L. Gurrell, Rachel Vingrys, Algis J. Bui, Bang V. PLoS One Research Article PURPOSE: We describe a novel approach to analyze fluorescein angiography to investigate fluorescein flow dynamics in the rat posterior retina as well as identify abnormal areas following laser photocoagulation. METHODS: Experiments were undertaken in adult Long Evans rats. Using a rodent retinal camera, videos were acquired at 30 frames per second for 30 seconds following intravenous introduction of sodium fluorescein in a group of control animals (n = 14). Videos were image registered and analyzed using principle components analysis across all pixels in the field. This returns fluorescence intensity profiles from which, the half-rise (time to 50% brightness), half-fall (time for 50% decay) back to an offset (plateau level of fluorescence). We applied this analysis to video fluorescein angiography data collected 30 minutes following laser photocoagulation in a separate group of rats (n = 7). RESULTS: Pixel-by-pixel analysis of video angiography clearly delineates differences in the temporal profiles of arteries, veins and capillaries in the posterior retina. We find no difference in half-rise, half-fall or offset amongst the four quadrants (inferior, nasal, superior, temporal). We also found little difference with eccentricity. By expressing the parameters at each pixel as a function of the number of standard deviation from the average of the entire field, we could clearly identify the spatial extent of the laser injury. CONCLUSIONS: This simple registration and analysis provides a way to monitor the size of vascular injury, to highlight areas of subtle vascular leakage and to quantify vascular dynamics not possible using current fluorescein angiography approaches. This can be applied in both laboratory and clinical settings for in vivo dynamic fluorescent imaging of vasculature. Public Library of Science 2014-11-03 /pmc/articles/PMC4218721/ /pubmed/25365578 http://dx.doi.org/10.1371/journal.pone.0111330 Text en © 2014 Hui et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hui, Flora Nguyen, Christine T. O. Bedggood, Phillip A. He, Zheng Fish, Rebecca L. Gurrell, Rachel Vingrys, Algis J. Bui, Bang V. Quantitative Spatial and Temporal Analysis of Fluorescein Angiography Dynamics in the Eye |
title | Quantitative Spatial and Temporal Analysis of Fluorescein Angiography Dynamics in the Eye |
title_full | Quantitative Spatial and Temporal Analysis of Fluorescein Angiography Dynamics in the Eye |
title_fullStr | Quantitative Spatial and Temporal Analysis of Fluorescein Angiography Dynamics in the Eye |
title_full_unstemmed | Quantitative Spatial and Temporal Analysis of Fluorescein Angiography Dynamics in the Eye |
title_short | Quantitative Spatial and Temporal Analysis of Fluorescein Angiography Dynamics in the Eye |
title_sort | quantitative spatial and temporal analysis of fluorescein angiography dynamics in the eye |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218721/ https://www.ncbi.nlm.nih.gov/pubmed/25365578 http://dx.doi.org/10.1371/journal.pone.0111330 |
work_keys_str_mv | AT huiflora quantitativespatialandtemporalanalysisoffluoresceinangiographydynamicsintheeye AT nguyenchristineto quantitativespatialandtemporalanalysisoffluoresceinangiographydynamicsintheeye AT bedggoodphillipa quantitativespatialandtemporalanalysisoffluoresceinangiographydynamicsintheeye AT hezheng quantitativespatialandtemporalanalysisoffluoresceinangiographydynamicsintheeye AT fishrebeccal quantitativespatialandtemporalanalysisoffluoresceinangiographydynamicsintheeye AT gurrellrachel quantitativespatialandtemporalanalysisoffluoresceinangiographydynamicsintheeye AT vingrysalgisj quantitativespatialandtemporalanalysisoffluoresceinangiographydynamicsintheeye AT buibangv quantitativespatialandtemporalanalysisoffluoresceinangiographydynamicsintheeye |