Cargando…

Three Minutes of All-Out Intermittent Exercise per Week Increases Skeletal Muscle Oxidative Capacity and Improves Cardiometabolic Health

We investigated whether a training protocol that involved 3 min of intense intermittent exercise per week — within a total training time commitment of 30 min including warm up and cool down — could increase skeletal muscle oxidative capacity and markers of health status. Overweight/obese but otherwi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gillen, Jenna B., Percival, Michael E., Skelly, Lauren E., Martin, Brian J., Tan, Rachel B., Tarnopolsky, Mark A., Gibala, Martin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218754/
https://www.ncbi.nlm.nih.gov/pubmed/25365337
http://dx.doi.org/10.1371/journal.pone.0111489
Descripción
Sumario:We investigated whether a training protocol that involved 3 min of intense intermittent exercise per week — within a total training time commitment of 30 min including warm up and cool down — could increase skeletal muscle oxidative capacity and markers of health status. Overweight/obese but otherwise healthy men and women (n = 7 each; age  = 29±9 y; BMI  = 29.8±2.7 kg/m(2)) performed 18 training sessions over 6 wk on a cycle ergometer. Each session began with a 2 min warm-up at 50 W, followed by 3×20 s “all-out” sprints against 5.0% body mass (mean power output: ∼450–500 W) interspersed with 2 min of recovery at 50 W, followed by a 3 min cool-down at 50 W. Peak oxygen uptake increased by 12% after training (32.6±4.5 vs. 29.1±4.2 ml/kg/min) and resting mean arterial pressure decreased by 7% (78±10 vs. 83±10 mmHg), with no difference between groups (both p<0.01, main effects for time). Skeletal muscle biopsy samples obtained before and 72 h after training revealed increased maximal activity of citrate synthase and protein content of cytochrome oxidase 4 (p<0.01, main effect), while the maximal activity of β-hydroxy acyl CoA dehydrogenase increased in men only (p<0.05). Continuous glucose monitoring measured under standard dietary conditions before and 48–72 h following training revealed lower 24 h average blood glucose concentration in men following training (5.4±0.6 vs. 5.9±0.5 mmol/L, p<0.05), but not women (5.5±0.4 vs. 5.5±0.6 mmol/L). This was associated with a greater increase in GLUT4 protein content in men compared to women (138% vs. 23%, p<0.05). Short-term interval training using a 10 min protocol that involved only 1 min of hard exercise, 3x/wk, stimulated physiological changes linked to improved health in overweight adults. Despite the small sample size, potential sex-specific adaptations were apparent that warrant further investigation.