Cargando…
Surgical therapies for corneal perforations: 10 years of cases in a tertiary referral hospital
PURPOSE: To report surgical therapies for corneal perforations in a tertiary referral hospital. METHODS: Thirty-one eyes of 31 patients (aged 62.4±18.3 years) with surgically treated corneal perforations from January 2002 to July 2013 were included in this study. Demographic data such as cause of co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218915/ https://www.ncbi.nlm.nih.gov/pubmed/25378903 http://dx.doi.org/10.2147/OPTH.S71102 |
Sumario: | PURPOSE: To report surgical therapies for corneal perforations in a tertiary referral hospital. METHODS: Thirty-one eyes of 31 patients (aged 62.4±18.3 years) with surgically treated corneal perforations from January 2002 to July 2013 were included in this study. Demographic data such as cause of corneal perforation, surgical procedures, and visual outcomes were retrospectively analyzed. RESULTS: The causes of corneal perforation (n=31) were divided into infectious (n=8, 26%) and noninfectious (n=23, 74%) categories. Infectious causes included fungal ulcer, herpetic stromal necrotizing keratitis, and bacterial ulcer. The causes of noninfectious keratopathy included corneal melting after removal of a metal foreign body, severe dry eye, lagophthalmos, canaliculitis, the oral anticancer drug S-1, keratoconus, rheumatoid arthritis, neurotrophic ulcer, atopic keratoconjunctivitis, and unknown causes. Initial surgical procedures included central large corneal graft (n=17), small corneal graft (n=7), and amniotic membrane transplantation (n=7). In two cases the perforation could not be sealed during the first surgical treatment and required subsequent procedures. All infectious keratitis required central large penetrating keratoplasty to obtain anatomical cure. In contrast, several surgical options were used for the treatment of noninfectious keratitis. After surgical treatment, anatomical cure was obtained in all cases. Mean postoperative best corrected visual acuity was better at 6 months (logMAR 1.3) than preoperatively (logMAR 1.8). CONCLUSION: Surgical therapies for corneal perforations in our hospital included central large lamellar/penetrating keratoplasty, small peripheral patch graft, and amniotic membrane transplantation. All treatments were effective. Corneal perforation due to the oral anticancer drug S-1 is newly reported. |
---|